首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由. [img][/img]
已知线性方程组 的一个基础解系为[b11,b11,…,b1,2n]T,[b21,b22,…,b2,2n]T,…,[bn1,bn2,…,bn,2n]T.试写出下列线性方程组的通解,并说明理由. [img][/img]
admin
2019-04-08
66
问题
已知线性方程组
的一个基础解系为[b
11
,b
11
,…,b
1,2n
]
T
,[b
21
,b
22
,…,b
2,2n
]
T
,…,[b
n1
,b
n2
,…,b
n,2n
]
T
.试写出下列线性方程组的通解,并说明理由.
[img][/img]
选项
答案
为方便记,对方程组(I)引入如下记号a
i
=[a
i1
,a
i2
,…,a
i,2n
](i=1,2,…,n),则其系数矩阵 [*] A
T
=[a
1
T
,a
2
T
,…,a
n
T
]. 同样,对方程组(Ⅱ)引入记号b
i
=(b
i1
,b
i2
,…,b
i,2n
)(i=1,2,…,n),相应的系数矩阵为 [*] B
T
=[b
1
T
,b
2
T
,…,b
n
T
], 则方程组(I),(Ⅱ)的矩阵形式为AX=0及BY=0. 由题设有b
1
T
,b
2
T
,…,b
n
T
为方程组(I)的一个基础解系,则 A[b
1
T
,b
2
T
,…,b
n
T
]=[0,0,…,0], 即 AB
T
=O, 从而(AB
T
)
T
=BA
T
=O,即B[a
1
T
,a
2
T
,…,a
n
T
]=[0,0,…,0],因而找到了a
1
T
,a
2
T
,…,a
n
T
为方程组(Ⅱ)的解向量.下面证明这组解向量线性无关,且其向量个数为2n一秩(B),则该组向量就是方程组(Ⅱ)的一组基础解系. 事实上,因b
1
T
,b
2
T
,…,b
n
T
为方程组(I)的基础解系,故其线性无关,且其所含向量个数为n=2n一秩(A),即秩(A)=n,于是a
1
,a
2
,…,a
n
也线性无关,即a
1
T
,a
2
T
,…,a
n
T
也线性无关.又 因b
1
T
,b
2
T
,…,b
n
T
线性无关,故b
1
,b
2
,…,b
n
也线性无关,于是秩(B)=n,即方程组(Ⅱ)的解空间的维数为2n一秩(B)=n. 综上所述,a
1
T
,a
2
T
,…,a
n
T
为方程组(Ⅱ)的一个基础解系,因而方程组(Ⅱ)的通解为 y=k
1
a
1
T
+k
2
a
2
T
+…+k
n
a
n
T
, 其中k
i
(i=1,2,…,n)为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/dD04777K
0
考研数学一
相关试题推荐
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
(1)D=|AT|=(a4一a1)(a4一a2)(a4一a3)(a3一a1)(a3一a2)(a2一a1),若ai≠aj(i≠j),则D≠0,方程组有唯一解,又D1=D2=D3=0,D4=D,所以方程组的唯一解为X=(0,0,0,1)T;(2)当a1=
设a=(a1,a2,…an)T,a1≠0,A=aaT,(1)证明λ=0是A的n-1重特征值;(2)求A的非零特征值及n个线性无关的特征向量.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
已知齐次线性方程组=有非零解,且矩阵是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
设A=,E为3阶单位矩阵.(I)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设向量场A={xz2+y2,x2y+z2,y2z+x2},求rotA及divA.
随机试题
关于防火门的说法,不符合《建筑设计防火规范》GB50016—2014要求的是()。
分销渠道设计的过程:
金黄色葡萄球菌标准质控株是
来源于动物病理产物的药材为
采取专门机关行使宪法解释权的国家是()。
下列各项中,符合收入要素定义的是()。
五岳之中以险著称的是()。
Whenteaching______,teachersshouldnotonlyfocusonwordsorgrammar,butalsofostertheabilitytounderstandtherelations
在我们的生活里,有一段时光,这时青春的_______成了记忆,夏日茂盛的回音在空中还隐约可闻。这时看人生,问题不是如何发展,而是如何真正生活:不是如何奋斗操劳,而是如何享受自己拥有的那宝贵的刹那;不是如何去_______精力,而是如何_______那股精力
______isthecoreoftheEnglishGovernment.
最新回复
(
0
)