首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则
设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则
admin
2016-03-26
43
问题
设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则
选项
A、当f(a)f(b)<0时,存在ξ∈(a,b),使f(ξ)=0.
B、对任何ξ∈(a,b),有
C、当f(a)=f(b)时,存在ξ∈(a,b),使f’(ξ)=0.
D、存在ξ∈(a,b),使f(b)一f(a)=f’(ξ)(b一a).
答案
B
解析
由于f(x)在(a,b)内可导.ξ∈(a,b),则f(x)在ξ点可导,因而在ξ点连续,故
转载请注明原文地址:https://kaotiyun.com/show/dET4777K
0
考研数学三
相关试题推荐
在新中国历史上,五年计划是中国国民经济计划的重要部分,主要是对国家重大建设项目、生产力分布和国民经济重要比例关系等作出规划,为国民经济发展远景规定目标和方向。“一五”计划的基本任务有
社会各个物质生产部门、分部门和行业的所有企业的劳动者在一定时期内(一般以年为单位)所生产的全部物质资料的总和是()。
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
求下列函数的导数:(1)y=2x4-3/x2+5;(2)y=e2x+2x+7;(3)y=ln2x+2lgx;(4)y=3secx+cotx;(5)y=sinx·tanx;(6)y=x3lnx;(7)y=exsinx;
下列复合函数的一阶偏导数:(1)z=x3y-xy2,x=scost,y=ssint;(2)z=x2lny,x=y/x,y=3s-2t;(3)z=xarctan(xy),x=t2,y=set:(4)z=xey+ye-x,x=et,y=st2.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
A是n阶矩阵,且A3=0,则().
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
随机试题
男,30岁,建筑工人,半小时前从5m高处摔下,急诊摄片显示左第10、11肋骨骨折,留院观察,第3天出现剧烈腹痛伴休克。首先应考虑为
熔断器属于配电电器,其用途是()。
某承包商在混凝土重力坝施工过程中,采用分缝分块常规混凝土浇筑方法。由于工期紧,浇筑过程中气温较高,为保证混凝土浇筑质量,承包商积极采取了降低混凝土的入仓温度等措施。在某分部工程施工过程中,发现某一单元工程混凝土强度严重不足,承包商及时组织人员全部
分出再保险实务中,分出业务手续有()
下列国家中认为“7”是吉利数字的是()。
2005年世界环境日的主题是“人人参与,创建绿色家园”,这是采用了()的社区教育宣传手法。
【2015河北石家庄】马斯洛需要层次理论中最高层次需要是被尊重的需要。()
维生素E是一种溶解于油中的维生素,它是一种抗氧化剂,能清除氧自由基,从而保护细胞膜上的脂质。而脂质的氧化与冠心病、癌症、衰老等密切相关。总之,维生素E是人体不可缺少的营养成分,但是“需要”并不意味着越多越好。维生素E缺乏在人群中很少发生,只有几种人可能存在
在面向对象数据模型中,下列叙述不正确的是()。
ENDANGEREDSPECIESAlthoughwecannotdoanythingabouttheplantsandanimalsthatarealready【31】________,wecandosomething
最新回复
(
0
)