首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
上半平面有一条凹曲线y=y(x),当x≠1时,y’(x)≠0,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数,其中Q是法线与x轴的交点,且曲线在点(1,1)处的切线与x轴平行,求y(x)的表达式.
上半平面有一条凹曲线y=y(x),当x≠1时,y’(x)≠0,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数,其中Q是法线与x轴的交点,且曲线在点(1,1)处的切线与x轴平行,求y(x)的表达式.
admin
2021-04-07
44
问题
上半平面有一条凹曲线y=y(x),当x≠1时,y’(x)≠0,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数,其中Q是法线与x轴的交点,且曲线在点(1,1)处的切线与x轴平行,求y(x)的表达式.
选项
答案
曲线y=y(x)在点P(x,y)处的法线方程为 [*] 令Y=0,得X=x+yy’,即它与x轴的交点是Q(x+yy’,0),从而法线段PQ的长度是 [*] 于是[*] 即 yy"=1+(y’)
2
, (*) 令y’=p,y"=[*],代入*式,得y[*]=1+p
2
,即[*],得1/2×ln(1+p
2
)=ln∣y∣+lnC
1
, 即C
1
∣y∣=[*],由x=1时,y=1,p=0,得C
1
=1,故 ∣y∣=[*] 代入dy/dx=p,得dy/dx=±[*],即 [*] 得ln(y+[*])=±x+C
2
,由x=1,y=1,得C
2
=±(x-1), 因此,所求曲线方程为 [*] 即有(无论上式中取“+”号还是“-”号) y=[e
x-1
+e
-(x-1)
]/2
解析
转载请注明原文地址:https://kaotiyun.com/show/dEy4777K
0
考研数学二
相关试题推荐
已知矩阵有两个线性无关的特征向量,则a=__________.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是_________。
设χ=χ(y,z),y=y(z,χ),z=z(χ,y)都是方程F(χ,y,z)=0所确定的隐函数,并且F(χ,y,z)满足隐函数存在定理的条件,则=_______.
曲线在点(0,1)处的法线方程为_______.
曲线的渐近线是____________.
设三元二次型x12+x22+5x32+2tx1x2-2x1x3+4x2x3是正定二次型,则t∈______.
若曲线y=x3+ax2+bx+1有拐点(一1,0),则b=___________.
设a>0,b>0都是常数,则=_______
D是圆周x2+y2=Rx所围成的闭区域,则=________。
设函数f(t)在(0,+∞)内具有二阶连续导数,函数z=满足=0,若f(1)=0,f′(1)=1,求f(χ).
随机试题
“凡是能言语、能思维、能制造和使用工具的动物都是人。”这属于思维过程中的()
用DDD进行药物利用研究的优点不包括:
甲状腺腺泡细胞分泌的激素是肾上腺皮质球状带分泌的激素是
某城镇污水处理厂的平均流量为1.5m3/s,总变化系数Kz=1.3。取曝气沉沙池最大时流量的停留时间为2min,则所需曝气沉沙池的总容积为()。
投资主体是为了获得未来的货币增值或收益而投资,投资是()。
下列应税消费品同时适用定额和定率税率的是()。
法人对行政机关作出的冻结财产等行政强制措施不服的,应先向人民法院提起行政诉讼,人民法院不予受理的,才可申请行政复议。()
2009—2013年我国货物对外贸易为()。
一位美国学者指出,第二次鸦片战争期间,美国只是“给予联军以道义上的支持和合作”,却在战后获得了很多权益。其中一项权益是:
儿童期学习的特点主要表现在()方面。
最新回复
(
0
)