首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X服从[0,θ]上的均匀分布,X1,…,Xn是取自总体X的一个简单随机样本. (Ⅰ)求θ的矩估计量; (Ⅱ)是否为θ的无偏估计量,为什么? (Ⅲ)求θ的最大似然估计量; (Ⅳ)是否为θ的无偏估计量,为什么?
设总体X服从[0,θ]上的均匀分布,X1,…,Xn是取自总体X的一个简单随机样本. (Ⅰ)求θ的矩估计量; (Ⅱ)是否为θ的无偏估计量,为什么? (Ⅲ)求θ的最大似然估计量; (Ⅳ)是否为θ的无偏估计量,为什么?
admin
2018-06-12
123
问题
设总体X服从[0,θ]上的均匀分布,X
1
,…,X
n
是取自总体X的一个简单随机样本.
(Ⅰ)求θ的矩估计量
;
(Ⅱ)
是否为θ的无偏估计量,为什么?
(Ⅲ)求θ的最大似然估计量
;
(Ⅳ)
是否为θ的无偏估计量,为什么?
选项
答案
(Ⅰ)记EX=μ,则μ=EX=θ/2,即θ=2μ.故θ的矩估计量[*]. (Ⅱ)由于[*]=2EX=2μ=θ,因此[*]是θ的无偏估计量. (Ⅲ)对于总体X的样本值χ
1
,…,χ
n
,似然函数 [*] 当θ<max(χ
1
,…,χ
n
)时,L=0. 当0≥max(χ
1
,…,χ
n
),L=[*]是θ的单调减函数,因此当θ=max(χ
1
,…,χ
n
)时,L达到最大值.故θ的最大似然估计量[*]=max(X
1
,…,X
n
). (Ⅳ)为求[*]的期望值,需先求[*]的分布. 因总体X服从[0,θ]上均匀分布,因此X
i
(i=1,…,n)都服从[0,θ]上均匀分布,其分布函数为 [*] 概率密度为 [*] [*]的分布函数记为G(χ),概率密度记为g(χ),则 当χ<0时,G(χ)=0;当χ>0时,G(χ)=1;当0≤χ≤0时, G(χ)=P{[*]≤χ}=P{max(X
1
,…,X
n
)≤χ}=P{[*](X
i
≤χ)}. 由于X
1
,…,X
n
相互独立,于是有 [*] 计算得出[*]不是θ的无偏估计量.
解析
转载请注明原文地址:https://kaotiyun.com/show/dGg4777K
0
考研数学一
相关试题推荐
设有向曲面S为锥面的下侧,且介于z=1与z=4之间,f(x,y,z)为连续函数,求第二型曲面积分
设平面区域D用极坐标表示为
设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.
A为3阶实对称矩阵,A的秩为2,且(1)求A的所有特征值与特征向量;(2)求矩阵A.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Aχ=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Aχ=b的通解是_______.
设α1=(1,2,3,1)T,α2=(3,4,7,-1)T,α3=(2,6,a,6)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
设总体X服从正态分布N(μ,1),X1,X2,…,X9是取自总体X的简单随机样本,要在显著性水平a=0.05下检验H0:μ=μ0=0,H1:μ≠0,如果选取拒绝域R={≥c}.(Ⅰ)求C的值;(Ⅱ)若样本观测值的均值
在长为L的线段上任取两点,求两点距离的期望和方差.
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
随机试题
代谢性碱中毒出现手足搐搦的主要原因是
修剪片体(TrimmedSheet)是一种相关参数化的特征,在建立之后可随时修改修剪边界,投射方向和被保留区或被取消区域?
穿髓孔大,龋洞内充满息肉组织的变化见于
A、药物由高浓度区域向低浓度区域扩散B、需要能量C、借助于载体使非脂溶性药物由高浓度区域向低浓度区域扩散D、小于膜孔的药物分子通过膜孔进入细胞膜E、黏附于细胞膜上的某些药物随着细胞膜向内凹陷而进入细胞内胞
小儿肠套叠时大便的特点是
在履行土地登记代理合同过程中,因土地登记代理人或其所在的机构的故意或过失,给当事人造成经济损失的,应由()承担赔偿责任。
建筑幕墙工程接缝处理,下列说法错误的是( )。
小李来到社会工作服务机构向社会工作者咨询,说自己最近谈了女朋友,很满意。但女朋友嫌他生活散漫,没有上进心。闲暇时间不是和朋友打牌,就是喝酒。有时还上班迟到,提出要和他分手。小李很珍惜这份感情,表示自己很想改,但又不知道怎么改,因而很苦恼。为了增强小李解决问
某造纸厂暗中将污水管接至海边,定期排放污水入海。某日,县公安局食品药品和环境犯罪勘查大队民警巡查发现了排污口。此时,民警的下列做法正确的有:
Whichofthefollowingisthebesttitle?
最新回复
(
0
)