首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线L位于Oχy平面的第一象限内,过L上任意一点M处自切线与y轴总相交,把交点记作A,则总有长度,若L过点(),求L的方程.
设曲线L位于Oχy平面的第一象限内,过L上任意一点M处自切线与y轴总相交,把交点记作A,则总有长度,若L过点(),求L的方程.
admin
2016-10-21
82
问题
设曲线L位于Oχy平面的第一象限内,过L上任意一点M处自切线与y轴总相交,把交点记作A,则总有长度
,若L过点(
),求L的方程.
选项
答案
设L的方程为y=y(χ),过点M(χ,y(χ))的切线与y轴的交点为A(0,y(χ)-χy′(χ)),又 [*]=χ
2
+[y(χ)-(y(χ)-χy′(χ))]
2
=χ
2
+χ
2
y
′2
, [*]=(y-χy′)
2
, 按题意得χ
2
+χ
2
y
′2
=(y-χy′)
2
,即2χyy′-y
2
=-χ
2
. 又初始条件[*]. 这是齐次方程y′-[*],令u=[*]上,则方程化成 [*] 分离变量得[*] 积分得ln(1+u
2
)=-lnχC
1
,1+u
2
=[*]. 代入u=[*]得y
2
+χ
2
=Cχ. 由初始条件[*],得C=3. 因此L的方程为y
2
+χ
2
=3χ.
解析
转载请注明原文地址:https://kaotiyun.com/show/dHt4777K
0
考研数学二
相关试题推荐
设f(x),g(x),h(x)是定义在(-∞,+∞)上的单调增加函数,且f(x)≤g(x)≤h(x),证明f[f(x)]≤g[g(x)]≤h[h(x)].
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比高阶的无穷小,则正整数n=________。
当h→0时,f(x0-3h)-f(x0)+2h是h的高阶无穷小量,则f’(x0)=________。
设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时,恒有∣f(x)∣≤x2,则x=0必是f(x)的________。
设f(x)的一个原函数为,求∫xf"(x)dx。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]求出使g(x)取最小值的x值。
幂级数的收敛半径R=________。
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
随机试题
直流放大器主要放大直流信号,但也能放大交流信号。()
治疗先天性甲状腺功能减低症的主要药物是
如图所示,水平河床上有一溢流水坝,坝段长为L,通过流量为Q时,坝上游水深为H,溢流水坝下游收缩断面水深为hc,求水流对坝体的作用力。应用动量方程来求解这一问题时,下面的求解过程中,错误的是()。
在施工过程中,工程师发现曾检验合格的工程部位仍存在施工质量问题,则修复该部位工程质量缺陷时应由()。
【真题(初级)】公司采用较高的信用标准,将会导致的结果是()。
著作权转让合同中著作权人未明确转让的权利,未经著作权人同意,另一方当事人不得行使。()
中国四大佛教名山是()。
()是围家统一实施的所有适龄儿童、少年必须接受的教育,是国家必须予以保障的公益性事业。
我在一些卓越的评论家的著作中读到过这么一种观点,说托尔斯泰的思想精髓是源于法国的浪漫主义作家乔治·桑、维克多·雨果。且不说认为托尔斯泰是受乔治·桑影响的这种看法之不可信,也不必去否认让·雅克·卢梭和司汤达对他的实际影响之大,反正怀疑他的伟大和魅力是源自他的
A.WushuschoolshavedevelopedquicklyB.WushuhasaverydeepbasefromthemassesC.ItcanstrengthenphysicalhealthA:I’vea
最新回复
(
0
)