首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x),h(x)是定义在(-∞,+∞)上的单调增加函数,且f(x)≤g(x)≤h(x),证明f[f(x)]≤g[g(x)]≤h[h(x)].
设f(x),g(x),h(x)是定义在(-∞,+∞)上的单调增加函数,且f(x)≤g(x)≤h(x),证明f[f(x)]≤g[g(x)]≤h[h(x)].
admin
2022-09-05
93
问题
设f(x),g(x),h(x)是定义在(-∞,+∞)上的单调增加函数,且f(x)≤g(x)≤h(x),证明f[f(x)]≤g[g(x)]≤h[h(x)].
选项
答案
因为f(x),g(x),h(x)是定义在(-∞,+∞)上的单调增加函数,所以对任意x
1
,x
2
∈(-∞,+∞),x
2
>x
1
,有f(x
1
)≤f(x
2
),g(x
1
)≤g(x
2
),h(x
1
)≤h(x
2
). 又对任意x∈(-∞,+∞)有f(x)≤g(x)≤h(x),所以 f[f(x)]≤f[g(x)]≤g[g(x)] g[g(x)]≤g[h(x)]≤h[h(x)] 即f[f(x)]≤g[g(x)]≤h[h(x)].
解析
转载请注明原文地址:https://kaotiyun.com/show/S0R4777K
0
考研数学三
相关试题推荐
设a1,a2,…,an为n个n维向量,证明:a1,a2,…,an线性无关的充分必要条件是任一n维向量总可由a1,a2,…,an线性表示.
=_____________.
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤|f’(x)|dx(a<x<b).
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
计算二重积分,其中D是由直线y=1、曲线y=x2(x≥0)以及y轴所围成的区域。
设则有()
e一2.因x→0时,arcsinx~x,故
观察下列数列的变化趋势,判别哪数列有极限,如有极限,写出它们的极限.
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=+α,且y(0)=π,则y(1)=________.
设则必有()
随机试题
乳清蛋白受热极易发生变性。
为确定腹腔压痛点常用哪种触诊法
A、血压升高、心率加快B、血压降低、心率加快C、血压升高、心率减慢D、血压降低、心率减慢E、血压和心率均不变肾上腺髓质激素大量释放时
合同转让的类型有()。
客户身份资料自业务关系结束当年计起至少保存________年,与销售业务有关的其他资料自业务发生当年计起至少保存____________年。()
年薪制是以企业()为时间单位,根据经营者的业绩好坏而计发薪酬的一种薪酬制度。
个体工商户、个人独资企业和合伙企业或者个人从事种植业、养殖业、饲养业、捕捞业取得的所得,暂不征收个人所得税。()
17世纪、18世纪的资产阶级学者提出的反映新兴资产阶级利益和要求的思想是()。
下列关于对象"更新前"事件的叙述中,正确的是( )。
Itisnotlongsinceconditionsinthemineswereworsethantheyarenow.Therearestill【C1】______afewveryoldwomenwhoin
最新回复
(
0
)