首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2.
求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2.
admin
2013-09-15
102
问题
求连续函数f(x),使它满足f(x)+2∫
0
x
f(t)dt=x
2
.
选项
答案
方程f(x)+2∫
0
2
f(t)dt=x
2
两边对x求导得f
’
(x)+2f(x)=2x, 令x=0,由原方程得f(0)=0. 于是,原问题就转化为求微分方程f
’
(x)+2f(x)=2x满足初始条件f(0)=0的特解. 由一阶线性微分方程的通解公式,得 f(x)=e
-∫2dx
(∫2x*e
∫2dx
dx+C)=e
-2x
(∫2xe
2x
dx+C)=Ce
-2x
+x- 1/2. 代入初始条件f(0)=0,得C=1/2,从而f(x)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dI34777K
0
考研数学二
相关试题推荐
(2006年)设函数f(u)可微,且则z=f(4x2一y2)在点(1,2)处的全微分dz|(1,2)=______.
已知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2。(Ⅰ)求实数a的值;(Ⅱ)求正交变换x=Qy,将f化为标准形。
(93年)假设:(1)函数y=f(χ)(0≤χ<+∞)满足条件f(0)=0,和0≤0(χ)≤eχ-1;(2)平行于y轴的动直线MN与曲线y=f(χ)和y=eχ-1分别相交于点p1和p2;(3)曲线y=f(χ),直线MN与χ轴所围封闭图形
(2003年)已知曲线y=x3一3a2x+b与x轴相切,则b2可以通过a表示为b2=______.
(02年)设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2.(1)求A的全部特征值;(2)当志为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
设二次型f(x1,x2,x3)=xTAx的秩为1,A中各行元素之和为3,则f在正交变换x=Qy下的标准形为__________。
(2007年)设函数f(x,y)连续,则二次积分等于()
(2012年)设函数f(t)连续,则二次积分=()
[2018年]曲线y=x2+2lnx在其拐点处的切线方程是________.
随机试题
著名边塞诗人岑参最擅长的诗歌体裁是()。
讲座、讨论会、交谈属于()
呋塞米应用后,尿中哪些物质排出减少:
参与血小板聚集反应的是哪种血小板膜糖蛋白
矿业工程在颁发工程接受证书前的(),业主(监理工程师)可以发布变更指示或以要求承包商递交建议书的任何一种方式提出变更。
下列各项不属于最低生活保障标准确定方法的是( )。
根据《证券投资基金运作管理办法》的规定,货币市场基金、中短债基金不得投资于流通受限证券。()
在当代资本主义国家中出现了“无人工厂”,这种资本主义条件下的生产自动化从本质上看
设(P(x,y),Q(x,y))=,n为常数,问∫LPdx+Qdy在区域D={(x,y)|(x,y)∈R2,(x,y)≠(0,0)}是否与路径无关.
位于
最新回复
(
0
)