首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×n矩阵,对任何n维列向量x都有Ax=0,证明:A=0.
设A是n×n矩阵,对任何n维列向量x都有Ax=0,证明:A=0.
admin
2021-07-27
41
问题
设A是n×n矩阵,对任何n维列向量x都有Ax=0,证明:A=0.
选项
答案
因对任何x均有Ax=0,故方程组的基础解系向量个数为n.又r(A)+基础解系向量个数n=n(未知量个数),故有r(A)=0,即A=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/dLy4777K
0
考研数学二
相关试题推荐
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设A=E-2XXT,其中X=[x1,x2,…,xn]T,且XTX=1,则A不是()
设则f’x(2,1)=()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设P=,Q为三阶非零矩阵,且PQ=O,则().
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α1,α2,α3,β1+7.β2|等于()
随机试题
2个月患儿,人工喂养,近2天口腔黏膜上出现白色乳凝块样物,不痛,用棉签不易拭去,强行剥脱后,局部黏膜潮红粗糙,有渗血。最可能的疾病是()。
体内氨的清除主要通过
口腔颌面部软组织损伤可分为()。
在建设项目工程分析的方法中,()要求时间长,需投入的工作量大,所得结果较准确。
在建设工程项目施工过程中,施工机械使用费的索赔款项包括()。
常用的CD-ROM光盘能进行的操作是( )。
以下哪项会增加企业营运资本?
如图所示,甲和乙在面积为54π的半圆形游泳池内游泳,他们分别从位置A和B同时出发,沿直线同时游到位置C。若甲的速度为乙的2倍,则原来甲、乙两人相距:
用无差异曲线、预算线(图)说明消费者均衡及其条件。
在考生文件夹下,打开学生数据库sdb,完成如下简单应用:(1)使用查询设计器设计一个名称为svg的查询,查询每个“女”同学的学号(来自student表)、姓名、课程名、成绩和任课教师(来自teacher表的教师名),查询结果按学号升序排序并输出到
最新回复
(
0
)