首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使
admin
2020-03-05
21
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明:存在ξ∈(a,b)使
选项
答案
令φ(x)=f(x)∫
x
b
g(x)dt+g(x)∫
a
x
f(t)dt, 则φ(x)在区间[a,b]上连续,在区间(a,b)内可导,且 φ’(x)=[f’(x)∫
x
b
g(t)dt—f(x)g(x)]+[g(x)f(x)+g’(x)∫
a
x
f(t)dt] =f’(x)∫
x
b
g(t)dt+g’(x)∫
a
x
f(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ’(ξ)=0,即 f’(ξ)∫
ξ
b
g(t)dt+g’(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0, 从而就有∫
x
b
g(t)dt>0,于是有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dMS4777K
0
考研数学一
相关试题推荐
已知向量组α1=(1,1,1,3)T,α2=(-0,-1,2,3)T,α3=(1,2a-1,3,7)T,α4=(-1,-1,a-1,-1)T的秩为3,则a=_______.
设f(x)=则f’(0)=_______.
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{|X一μ|<σ}应该()
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
函数u=xy+yz+xz在点P(1,2,3)处沿P点向径方向的方向导数为_______.
试证明:曲线恰有三个拐点,且位于同一条直线上.
求下列函数的导数
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设其中f和g具有一阶连续偏导数,且gz(x,y,z)≠0,求。
设函数f(x)连续,且f(0)≠0,求极限。
随机试题
下列哪项不是机会致病菌引起医院感染率上升的原因
痢疾的病位在
工程的概、预算主要发生在()。
督察长连续3次考试成绩不及格的,中国证监会可免除其职务。()
(2014年真题)期刊的栏目设计应该()。
简述当代儿童发展观的基本内容。
决定警察必要性的直接因素是()。
请用不超过200字的篇幅,概括出给定材料所反映的主要问题。要求:全面,有条理,有层次。从政府制定政策的角度,提出解决给定资料所反映问题的对策建议。要求:有针对性,有条理,切实可行。字数不超过350字。
“渐”的作用,就是用每步相差极微极缓的方法来隐蔽时间的过去与事物的变迁的痕迹,使人误认其为恒久不变。这真是造物主骗人的一大诡计!这有一个比喻的故事:某农夫每天朝晨抱了犊而跳过一沟,到田里去工作,夕暮又抱了它跳过沟回家。每日如此,未尝间断。过了一年,犊已渐大
要在Web浏览器中查看某一电子商务公司的主页,应知道()。
最新回复
(
0
)