首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明: (b一a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明: (b一a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
admin
2019-02-26
71
问题
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:
(b一a)∫
a
b
f(x)g(x)dx≥∫
a
b
f(x)dx∫
a
b
g(x)dx. (*)
选项
答案
引进辅助函数 F(x)=(x一a)∫
a
x
f(t)g(t)dt一∫
a
x
f(t)dt∫
a
x
g(t)dt 转化为证明F(x)≥0(x∈[a,b]). 由F(a)=0, F’(x)=∫
a
x
f(t)g(t)dt+(x一a)f(x)g(x)一f(x)∫
a
x
g(t)dt—g(x)∫
a
x
f(t)dt =∫
a
x
f(t)[g(t)一g(x)]dt—∫
a
x
f(x)[g(t)一g(x)]dt =∫
a
x
[f(t)一f(x)][g(t)一g(x)]dt≥0(x∈[a,b]) 其中(x一a)f(x)g(x)=∫
a
x
f(x)g(x)dt,我们可得F(x)在[a,b]单调不减,F(x)≥F(a)=0(x∈[a,b]),特别有 F(b)≥0 即原式成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/6h04777K
0
考研数学一
相关试题推荐
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为()
设f(u)有连续的二阶导数,且z=f(eχsiny)满足方程=e2χz,求f(u)。
设二维随机变量(X,Y)的联合分布函数为F(χ,y),其中X服从正态分布N(0,1),且Y=X,若F(a,b)=,则()
已知函数f(χ,y)满足=0,则下列结论中不正确的是()
设随机变量(X,Y)的概率密度函数为f(χ,y)=其分布函数为F(χ,y)。(Ⅰ)求F(χ,y);(Ⅱ)分别求(X,Y)关于X,Y的边缘概率密度,并问X与Y是否独立?
设f(x)在[0,1]上连续可导,f(1)=0,∫01f’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在[0,1]上连续,在(0,1)内可导,且证明:(I)存在c∈(0,1),使得f(c)=0;(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
(I)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设求可逆矩阵P,使得P-1AP=B.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它存进入大气层开始燃烧的前3s内,减少了体积的,
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+∫0xg(x—t)dt,则().
随机试题
下列关于呼吸道的结构和功能叙述错误的是()。
现代城市规划产生的历史背景随时间顺序表述正确的是()。
总进度纲要的主要内容包括项目实施的总体部署、总进度规划和()。
在了解被审计单位内部控制时,注册会计师最应当关注的是()。
“同中求异”或“异中求同”的思维方法是()。
根据以下资料。回答111~115题。2009年全国研究生教育招生51.1万人,毕业37.1万人,年末在校生人数为140.5万。普通高等教育本专科招生639.5万人,毕业531.1万人,年末在校生人数为2144.7万。各类中等职业教育招生873.6万
爱迪生一生有1000多项发明,这几十万次()试验的时间从何而来?就是从常常连续工:作24小时甚至36小时的极度紧张工作中挤出来的。
二元函数f(x,y)在点(x0,y0)处两个偏导数fx’(x0,y0),f(x0,y0)存在是f(x,y)在该点连续的().
设幂级数的系数满足a0=2,nan=an-1+n-1,n=1,2,…,求此幂级数的和函数S(x),其中x∈(-1,1).
下列关于链式存储结构的叙述中,哪些是正确的?()Ⅰ.逻辑上相邻的结点物理上不必邻接Ⅱ.每个结点都包含恰好一个指针域Ⅲ.用指针来体现数据元素之间逻辑上的联系Ⅳ.结点中的指针都不能为空Ⅴ.可以通过计算直
最新回复
(
0
)