首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵. (1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
[2002年] 已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵. (1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
admin
2019-08-01
102
问题
[2002年] 已知A,B为三阶矩阵,且满足2A
-1
B=B一4E,其中E是三阶单位矩阵.
(1)证明矩阵A一2E可逆;(2)若B=
,求矩阵A.
选项
答案
将所给等式变形整理为(A一2E)C=E的形式可证A一2E可逆,也可利用命题2.2.1.6证之.进而求解矩阵方程. 解一 (1)在所给矩阵等式两边左乘A,利用AA
-1
=E,有 2B=AB一4A, (A一2E)B一4A=0. 在以上矩阵等式两端同加8E,得到 (A一2E)B-4(A一2E)=8E, 即 (A一2E)[(B一4E)/8]=E. 故A一2E可逆,且A一2E=[(B一4E)/8]
-1
,即A=[(B一4E)/8]
-1
+2E. (2)利用命题2.2.1.5(1)易求得 (B一4E)
-1
=[*] 则 A=2E+8(B一4E)
-1
=[*] ① 解二 利用命题2.2.1.6求之.由所给方程易求得AB一4A一2B=0,因而a=-4,b=-2,c=0,ab—c=8≠0.由该命题即得 (A一2E)(B一4E)=8E, A一2E=[(B一4E)/8]
-1
=8(B一4E)
-1
, 即A=2E+8(B一4E)
-1
.由解一知式①成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/dPN4777K
0
考研数学二
相关试题推荐
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢.在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时问变化.
求函数的反函数.
已知二元函数f(x,y)满足且f(x,y)=g(u,v),若=u2+v2,求a,b.
没u=f(x,y,xyz),函数z=z(x,y)由exyz=∫xyzh(xy+z-t)dt确定,其中f连续可偏导,h连续,求
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数.求φ’’(y).
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。[img][/img]若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为1
(2004年试题,二)设函数f(x)连续,且f’(0)>0,则存在δ>0,使得().
随机试题
反常性碱性尿
在X线摄影中,使用对比剂可以增加组织间的对比,有助于形成影像。肝肾功能严重受损不能进行静脉尿路造影检查的原因不包括
氨基酸脱氨基可生成相应的α-酮酸,后者在体内参与合成
下列有关金融中介与金融市场功能的关系的表述,传统理论认为()。
我国最早修筑长城的是(),大约始于公元前7世纪中叶。
人体的免疫功能,可清除自身的损伤细胞,在这一生理过程中,损伤细胞属于()。
君子博学而日参省乎己,_______。(《荀子.劝学》)
公安部不需要接受中央政法委员会的领导,但是各级地方公安机关要接受各级党委的政法委员会的领导。()
交管局要求司机在通过某特定路段时,在白天也要像晚上一样使用大灯,结果发现这条路上的年事故发生率比从前降低了15%。他们得出结论说:如果在全市范围内都推行该项规定会同样地降低事故发生率。以下哪项如果为真,最能支持上述论证的结论?
Tobefrank,IshouldsayTom______(与其说是个摄影师,不如说是个画家).
最新回复
(
0
)