首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵. (1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
[2002年] 已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵. (1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
admin
2019-08-01
43
问题
[2002年] 已知A,B为三阶矩阵,且满足2A
-1
B=B一4E,其中E是三阶单位矩阵.
(1)证明矩阵A一2E可逆;(2)若B=
,求矩阵A.
选项
答案
将所给等式变形整理为(A一2E)C=E的形式可证A一2E可逆,也可利用命题2.2.1.6证之.进而求解矩阵方程. 解一 (1)在所给矩阵等式两边左乘A,利用AA
-1
=E,有 2B=AB一4A, (A一2E)B一4A=0. 在以上矩阵等式两端同加8E,得到 (A一2E)B-4(A一2E)=8E, 即 (A一2E)[(B一4E)/8]=E. 故A一2E可逆,且A一2E=[(B一4E)/8]
-1
,即A=[(B一4E)/8]
-1
+2E. (2)利用命题2.2.1.5(1)易求得 (B一4E)
-1
=[*] 则 A=2E+8(B一4E)
-1
=[*] ① 解二 利用命题2.2.1.6求之.由所给方程易求得AB一4A一2B=0,因而a=-4,b=-2,c=0,ab—c=8≠0.由该命题即得 (A一2E)(B一4E)=8E, A一2E=[(B一4E)/8]
-1
=8(B一4E)
-1
, 即A=2E+8(B一4E)
-1
.由解一知式①成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/dPN4777K
0
考研数学二
相关试题推荐
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢.在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时问变化.
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤M.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数.求φ’’(y).
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵.
二阶常系数非齐次线性微分方程y’’-2y’-3y=(2x+1)e-x的特解形式为().
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式
曲线x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2π)的长度L=_________.
设a>0为常数,求积分I=xy2dσ,其中D:x2+y2≤ax.
(2000年)设E为4阶单位矩阵,且B-(E+A)-1(E-A).则(E+B)-1=_______.
随机试题
下列有关企业发生的全部成本转为费用的方式表述正确的有()。
金融互换合约产生的理论基础是()
简述体验在文学活动中的美学功能。
感染性心内膜炎可以出现以下哪些表现
O型血血清中的抗体以
某施工单位中标承包AB路段双向4车道高速公路交通工程的施工。该路段全长105km,设计速度100km/h,有8个互通式立交,采用封闭式收费,使用非接触式IC卡,全线设8个匝道收费站,收费站监控室有人值守进行收费管理,设一个监控、收费及通信分中心,并且在监控
注册会计师了解被审计单位关于财务业绩的衡量与评价的目标是()。
Themanagerwouldratherhisdaughter______inthesameoffice.
社工要帮助案主修正其错误的自我对话方式,应注意的方面是()。
GoodandHungryFast-foodfirmshavetobeathick-skinnedbunch.Healthexpertsregularlylambast(抨击)themforpeddling(售
最新回复
(
0
)