首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假定所涉及的反常积分(广义积分)收敛,证明: ∫-∞+∞=∫-∞+∞f(x)dx. (*)
假定所涉及的反常积分(广义积分)收敛,证明: ∫-∞+∞=∫-∞+∞f(x)dx. (*)
admin
2018-06-27
86
问题
假定所涉及的反常积分(广义积分)收敛,证明:
∫
-∞
+∞
=∫
-∞
+∞
f(x)dx. (*)
选项
答案
令t=x-[*],则当x→+∞时,t→+∞,x→0+时,t→-∞;x→0-时,t→+∞;x→ -∞时,t→-∞,故应以0为分界点将(*)式左端分成两部分,即 [*] 而且将x与t的关系反解出来,即得[*].同时,当x>0时, [*] 因此 [*] =∫
-∞
+∞
f(t)dt=∫
-∞
+∞
f(x)dx, 即(*)式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/Eak4777K
0
考研数学二
相关试题推荐
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,证明该两条切线与抛物线y=x2所围面积为常数.
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
设有以下函数①②③④则在点x=0处可导的共有
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3证明:α,Aα,A2α线性无关;
设积分区域D:{(x,y)|0≤x≤1,0≤y≤1},求
设,求f(x)的间断点并指出其类型.
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)