首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’
admin
2019-04-22
58
问题
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫
a
b
f(x)dx=f(η)(b一a);
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫
2
3
φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’’(ξ)<0。
选项
答案
(I)设M与m是连续函数f(x)在[a,b]上的最大值与最小值,即 m≤f(x)≤M,x∈[a,b]。 根据定积分性质,有 m(b一a)≤∫
a
b
f(x)dx≤M(b—a), [*] 根据连续函数介值定理,至少存在一点η∈[a,b],使得 [*] 即有 ∫
a
b
f(x)dx=f(η)(b—a)。 (Ⅱ)由上题的结论可知至少存在一点η∈[2,3],使 ∫
2
3
φ(x)dx=φ(η)(3—2)=φ(η), 又由φ(2)>∫
2
3
φ(x)dx=φ(η),知2<η≤3。 对φ(x)在[1,2],[2,η]上分别应用拉格朗日中值定理,并结合φ(1)<φ(2),φ(η)<φ(2)得 [*] 1<ξ
1
<2, [*] 2<ξ
1
<η≤3, 在[ξ
1
,ξ
2
]上对导函数φ’(x)应用拉格朗日中值定理,有 [*] ξ∈(ξ
1
,ξ
2
) [*] (1,3)。
解析
转载请注明原文地址:https://kaotiyun.com/show/dRV4777K
0
考研数学二
相关试题推荐
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n),证明:其中E是r阶单位阵.
证明不等式:|sinx2-sinx1|≤|x2-x1|
设y=y(χ),z=z(χ)是由方程z=χf(χ+y)和F(χ,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求_______.
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A—E)-1=_______.
计算(χ+y)dχdy=_______,其中D由不等式χ2+y2≤χ+y所确定.
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.
随机试题
Today,wewillbegin________westoppedyesterdaysothatnopointwillbeleftout.
A、Hisclasswillstartinaminute.B、Hehasgotanincomingphonecall.C、Someoneisknockingathisdoor.D、Hisphoneisrunni
“意见”这一文种属于
马克思主义的革命性表现为它具有()
腹股沟斜疝与直疝主要鉴别点是
A、化瘀止痛B、化痰C、燥湿清热D、温阳化湿E、拔毒生肌内消瘰疬丸既能软坚散结,又能
下列符合施工组织总设计的编制程序的是()。
重音记号为_________,顿音为_________。
艾宾浩斯以自己为被试,采用机械重复记忆的方法,对遗忘规律进行定量研究,据此回答下列问题:
求
最新回复
(
0
)