首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’
admin
2019-04-22
75
问题
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫
a
b
f(x)dx=f(η)(b一a);
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫
2
3
φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’’(ξ)<0。
选项
答案
(I)设M与m是连续函数f(x)在[a,b]上的最大值与最小值,即 m≤f(x)≤M,x∈[a,b]。 根据定积分性质,有 m(b一a)≤∫
a
b
f(x)dx≤M(b—a), [*] 根据连续函数介值定理,至少存在一点η∈[a,b],使得 [*] 即有 ∫
a
b
f(x)dx=f(η)(b—a)。 (Ⅱ)由上题的结论可知至少存在一点η∈[2,3],使 ∫
2
3
φ(x)dx=φ(η)(3—2)=φ(η), 又由φ(2)>∫
2
3
φ(x)dx=φ(η),知2<η≤3。 对φ(x)在[1,2],[2,η]上分别应用拉格朗日中值定理,并结合φ(1)<φ(2),φ(η)<φ(2)得 [*] 1<ξ
1
<2, [*] 2<ξ
1
<η≤3, 在[ξ
1
,ξ
2
]上对导函数φ’(x)应用拉格朗日中值定理,有 [*] ξ∈(ξ
1
,ξ
2
) [*] (1,3)。
解析
转载请注明原文地址:https://kaotiyun.com/show/dRV4777K
0
考研数学二
相关试题推荐
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
已知线性方程组(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
(1)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx.(2)计算
设f(x)有一个原函数
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+B,B=,则(A-E)-1=_______.
设f(χ)在[a,b]上连续,且f〞(χ)>0,对任意的χ1,χ2∈[a,b]及0<λ<1,证明:f[λχ1+(1-λ)χ2]≤λf(χ1)+(1-λ)f(χ2).
设L:y=e-χ(χ≥0).(1)求由y=e-χ、χ轴、y轴及χ=a(a>0)所围成平面区域绕χ轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
设二次型f=2χ12+2χ22+aχ32+2χ1χ2+2bχ1χ3+2χ2χ3经过正交变换X=QY化为标准形f=y12y22+4y32,求参数a,b及正交矩阵Q.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
随机试题
白喉病人早期死亡的主要原因为()
男性,35岁。发热、双颈部淋巴结进行性肿大1个月。查体:双侧颈部可触及数个1.5cm×1.5cm左右大的无触痛淋巴结,肝、脾肋下未触及。血象正常。胸部、腹部CT未发现深部淋巴结肿大。哪项检查对诊断帮助最大
多发性肌炎的下列哪项表达是不正确的
过敏性紫癜哪种类型病情最为严重
社会风险是指由于(),给项目建设和运营带来困难和损失的可能性。
项目质量控制体系运行的核心机制是()。
患者,男,52岁,毕Ⅱ式胃大部切除术后5天,突发上腹刀割样疼痛伴恶心、呕吐,腹膜刺激征明显,应考虑()。
儿童观察教师写在黑板上的生字,随后就能够模仿把这些字写在练习本上。当教师按照笔顺一笔一画地写生字时,儿童如果能聚精会神地观察,他便能在认知上模仿教师的书写经验,在头脑中把它记录下来,他甚至能在放学后几个小时,仍然依样写出生字。观察学习具有直接学习不可比
Forinvestorswonderingwhethertheyshoulddumptheirstocksbecausetheyneedthemoney,Ihaveonlythistosay:Ifyouneed
Astheglobalvillagecontinuestoshrinkandculturescollide,itisessentialforallofustobecomemoresensitive,moreawa
最新回复
(
0
)