首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a); (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’
admin
2019-04-22
78
问题
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫
a
b
f(x)dx=f(η)(b一a);
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫
2
3
φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’’(ξ)<0。
选项
答案
(I)设M与m是连续函数f(x)在[a,b]上的最大值与最小值,即 m≤f(x)≤M,x∈[a,b]。 根据定积分性质,有 m(b一a)≤∫
a
b
f(x)dx≤M(b—a), [*] 根据连续函数介值定理,至少存在一点η∈[a,b],使得 [*] 即有 ∫
a
b
f(x)dx=f(η)(b—a)。 (Ⅱ)由上题的结论可知至少存在一点η∈[2,3],使 ∫
2
3
φ(x)dx=φ(η)(3—2)=φ(η), 又由φ(2)>∫
2
3
φ(x)dx=φ(η),知2<η≤3。 对φ(x)在[1,2],[2,η]上分别应用拉格朗日中值定理,并结合φ(1)<φ(2),φ(η)<φ(2)得 [*] 1<ξ
1
<2, [*] 2<ξ
1
<η≤3, 在[ξ
1
,ξ
2
]上对导函数φ’(x)应用拉格朗日中值定理,有 [*] ξ∈(ξ
1
,ξ
2
) [*] (1,3)。
解析
转载请注明原文地址:https://kaotiyun.com/show/dRV4777K
0
考研数学二
相关试题推荐
A,B均为n阶矩阵,|A|=一2,|B|=3,则||B|A一1|=____________.
若函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex,则f(x)=___________.
已知齐次线性方程组有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组的通解是___________。
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A—E)-1=_______.
设A是一个n阶矩阵,且A2一2A一8E=0,则r(4E—A)+r(2E+A)=__________?
设f(x)是以T为周期的连续函数,且F(x)=f(t)dt+bx也是以T为周期的连续函数,则b=________
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设连续函数f(χ)满足∫0χtf(χ-t)dt-1-cosχ,求f(χ)dχ.
随机试题
基层业务人员和管理人员使用的信息是()
A.异丙托溴铵B.沙丁胺醇C.沙美特罗D.噻托溴铵E.福莫特罗短效β2受体激动剂为
固体分散体中药物的分散状态有
取得一级资质的合伙的房地产估价机构的出资额为人民币()万元以上。
对于大型复杂的产品,应用价值工程的重点应放在( )。
下列选项中属于保证担保范围的有()。
机关事业单位在参加基本养老保险的基础上,应当为其工作人员建立职业年金。单位按本单位工资总额的()缴费,个人按本人缴费工资的()缴费。
18,1/3,6,2,12,()
根据材料。回答121-125题。2005年教育行业的固定投资额为()亿元。
CharlieBellbecamechiefexecutiveofMcDonald’sinApril.Withinamonthdoctorstoldhimthathehadcolorectalcancer.After
最新回复
(
0
)