首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)分别满足如下两个条件中的任何一个: (Ⅰ)f(x)在x=0处三阶可导,且=1,则正确的是 (Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(-1)f"(x)-xf’(x)=ex-1,则下列说法正确的是 (A)f(0)
设f(x)分别满足如下两个条件中的任何一个: (Ⅰ)f(x)在x=0处三阶可导,且=1,则正确的是 (Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(-1)f"(x)-xf’(x)=ex-1,则下列说法正确的是 (A)f(0)
admin
2019-02-23
59
问题
设f(x)分别满足如下两个条件中的任何一个:
(Ⅰ)f(x)在x=0处三阶可导,且
=1,则正确的是
(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(
-1)f"(x)-xf’(x)=e
x
-1,则下列说法正确的是
(A)f(0)不是f(x)的极值,(0,f(0))不是曲线y=f(x)的拐点.
(B)f(0)是f(x)的极小值.
(C)(0,f(0))是曲线y=f(x)的拐点.
(D)f(0)是f(x)的极大值.
选项
答案
(Ⅰ)由条件[*]=1及f’(x)在x=0连续即知[*]=f’(0)=0. 用洛必达法则得[*]型未定式极限[*] 因[*]=f"(0),若f"(0)≠0,则J=∞与J=1矛盾,故必有f"(0)=0.再由f"’(0)的定义得 [*] =>f"’(0)=2. 因此,(0,f(0))是拐点.选(C). (Ⅱ)已知f’(0)=0,现考察f"(0).由方程得 [*] 又f"(x)在x=0连续=>f"(0)=3>0.因f(0)是f(x)的极小值.应选(B).
解析
转载请注明原文地址:https://kaotiyun.com/show/dij4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得
设=_______
已知f(x)在[0,2]上二阶连续可微,f(1)=0,证明:
证明:
[*]
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:存在η∈(1,2),使得f(t)dt=ξ(ξ-1)f’(η)ln2.
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<bb时,有().
设α1,α2,…,αm和β1,β2,…,βm都是n维向量组,k1,k2,…,km和P1,P2,…,pm都是不全为0的数组,使得(k1+p1)α1+(k2+p2)α2+…+(km+pm)αm+(k1-p1)β1+(k2-p2)β2+…+(km-pm)βm=0
已知两个线性方程组同解,求m,n,t.
设(x)表示标准正态分布函数,随机变量X的分布函数F(x)=(x一1),求(1)a、b应满足的关系式;(2)E(X).
随机试题
A.Na+B.K+C.HCO3-D.Ca2+E.Cl-神经细胞膜在静息时通透性最大的离子是
日本药品和药事监督管理层次分为中央级、都道府县级和市町村级三级。权力集中于中央政府厚生省药务局,地方政府为贯彻执行部门。()
当上市公司发行在外的普通股股数和实现的净利润一定时,下列各项中,影响市盈率的是()。
2013年8月5日,甲基金会取得一项捐款100万元,捐赠人限定将该款项用于购置化疗设备。2014年1月15日,甲基金会购入设备,价值80万元。2014年2月20日,经与捐赠人协商,捐赠人同意将剩余的款项20万元留归甲基金会自主使用。甲基金会下列处理中正确的
清初“四王”中,取得“熟不甜,生不涩,淡而厚,实而清”的收获的画家是()。
你所在辖区内的一家房地产开发商和业主因为交房和合同上不一致发生冲突,要你去处理,请问你会如何处理?
Inrecentyearsmanycountriesoftheworldhavebeenfacedwiththeproblemofhowtomaketheirworkersmoreproductive.Some
4/π
下列描述中正确的是
Itwasreally_____ofyoutoremembermybirthday.(2011-73)
最新回复
(
0
)