设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\|c|连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?

admin2017-08-28  34

问题 设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\|c|连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?

选项

答案设F(x)是f(x)在(a,b)的原函数.考察 [*] 于是F′+(c)=[*]f(x),F′=[*]f(x), 由于x=c是f(x)的第一类间断点,故[*]存在,但不相等,即F′+(c)≠F′(c). 或 [*]f(x)≠f(c), 即 F′(c)≠f(c). 这都与F(x)是f(x)在(a,b)的原函数相矛盾.因此f(x)在(a,b)不存在原函数.

解析 f(x)在(a,c)与(c,b)上连续,分别存在原函数,于是关键是看x=c处的情况.
转载请注明原文地址:https://kaotiyun.com/show/dnr4777K
0

随机试题
最新回复(0)