首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=xe2x一2x—cosx,讨论它在区间(一∞,+∞)内零点的个数.
设f(x)=xe2x一2x—cosx,讨论它在区间(一∞,+∞)内零点的个数.
admin
2014-04-23
56
问题
设f(x)=xe
2x
一2x—cosx,讨论它在区间(一∞,+∞)内零点的个数.
选项
答案
f(一1)=一e
-2
+2一cos1>0,f(0)=一1<0,f(1)=e
2
一2一cos1>0,所以在区间(一1,0)与区间(0.1)内分别至少有1个零点.f(x)=e
2x
+2xe
2x
一2+sinx=2xe
2x
+(e
2x
一1)+(sinx—1).所以当x<0时,f
’
(x)<0.所以在区间(一∞,一1]内f(x)无零点,在区间(一1,0)内有1个零点.f
’’
(x)=4e
2x
+4xe
2x
+cosx=4(1+x)e
2x
+cosx=(4e
2x
+cosx)+4xe
2x
.可见无论x∈(一1,0)还是x∈[0,+∞),f
’’
(x)>0.所以在区间(一1,+∞)内f(x)至多有。9个零点,而前已证明f(x)在区间(一1,1)内至少有2个零点,所以,f(x)仅有2个零点.分别在区间(一1,0)与(0,1)内.
解析
转载请注明原文地址:https://kaotiyun.com/show/KV54777K
0
考研数学一
相关试题推荐
[x]表示不超过x的最大整数,试确定常数a的值,使存在,并求出此极限
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式.
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f’(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在内有唯一的实根.
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
设f(x)在(-∞,+∞)内连续,以T为周期,证明:∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数)。
求xy”一y’lny’+y’lnx=0满足y(1)=2和y’(1)=e2的特解.
设则d2y/dx2=________.
设则在x=1处f(x)().
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:cov
随机试题
无侧限抗压强度试验时水泥稳定碎石养护7d,在最后一天需泡水,水温为室温。()
学校教育在人的发展中起决定性作用。
下述疾病属于临界性肿瘤的是
脊柱中很少发生椎间盘突出的是
麻疹主要受病的脏腑是
生后48小时内无胎便或少量胎便,随后出现顽固性便秘和腹胀,最常见于
为卧床病人进行床上擦浴时,错误的操作是()。
某派出所所长姜某身穿制服在一饭店二楼吃饭期间,闻知楼下有人打架即去劝解和调停。参与斗殴人之一的杨某在姜某表明身份、鸣枪示警后仍不停手,反而大骂姜某。对方见杨某仍不停手,又和其对打起来。杨某突然操起一啤酒瓶,并在桌上敲碎后刺向对方。姜某开枪,击中杨某右肩致其
民意测验是用简化的方式来了解公众的一般态度,对不同含义、不同程度的意见、态度都用是或否、赞成或反对两种答案来概括。盖洛普认为,只要采用科学的抽样方法,那么当样本数量达到一定规模后,就能较好地反映总体。这时再增加样本并不能提高多少精确度。对美国1亿人的民意测
法国一位哲学家说:“发展问题越来越成为人的灵魂的发展”其含义是说
最新回复
(
0
)