首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2……αn中,前n一1个线性相关,后n一1个线性无关,若令β=α1,α2……αn,A=(α1,α2……αn).试证方程组Ax=β必有无穷多组解,且其任意解(α1,α2……αn)T中必有an=1.
已知n维向量组α1,α2……αn中,前n一1个线性相关,后n一1个线性无关,若令β=α1,α2……αn,A=(α1,α2……αn).试证方程组Ax=β必有无穷多组解,且其任意解(α1,α2……αn)T中必有an=1.
admin
2016-01-11
90
问题
已知n维向量组α
1
,α
2
……α
n
中,前n一1个线性相关,后n一1个线性无关,若令β=α
1
,α
2
……α
n
,A=(α
1
,α
2
……α
n
).试证方程组Ax=β必有无穷多组解,且其任意解(α
1
,α
2
……α
n
)
T
中必有a
n
=1.
选项
答案
由题设β=α
1
,α
2
……α
n
,可得 [*] 则向量η=(1,1,…,1)
T
是方程组Ax=β的解,由此知方程组Ax=β有解,故r(A)=r(A,β). 由题设知α
1
,α
2
……α
n-1
线性相关,推得α
1
,α
2
……α
n
线性相关,而又由题设知α
1
,α
2
……α
n
线性无关,所以向量组α
1
,α
2
……α
n
的秩为n一1,从而r(A)=n一1. 综上可知,r(A)=r(A,β)=n一1<n.故方程组Ax=β有无穷多组解,并且其对应齐次线性方程组Ax=0的基础解系由n一(n一1)=1个非零解组成. 又由α
1
,α
2
……α
n-1
. 线性相关可知,存在不全为零的数λ
1
,λ
2
……λ
n
,使λ
1
α
1
+λ
2
α
2
+…+λ
n-1
α
n-1
=0.由此推得 [*] 所以非零向量(λ
1
,λ
2
,…,λ
n-1
,0)
T
是Ax=0的解,因而是Ax=0的一个基础解系,故Ax=β的通解x=k(λ
1
,λ
2
,…,λ
n-1
,0)
T
+(1,1,…,1,1)
T
,其中k为任意常数,且显见a
n
=1.
解析
本题考查非齐次线性方程组通解的结构和向量组线性相关性的有关理论.是一道抽象方程组求解的证明题.
转载请注明原文地址:https://kaotiyun.com/show/dv34777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 D
[*]
投掷n枚骰子,则出现点数之和的数学期望__________.
一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X表示同时需要调整的部件数.试求X的概率分布、数学期望E(X)和方差D(X).
设A是四阶方阵,A*是A的伴随矩阵,其特征值为1,一1,2,4,则下列矩阵中为可逆矩阵的是().
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是__________.
微分方程(y2-6x)y’+2y=0(y≥1)满足y(0)=1的解为________.
已知三阶矩阵,记它的伴随矩阵为A*,则三阶行列式________.
设f(x)在[a,b]上连续,(a,b)内可导,0<a<b,试证:存在∈(a,b),使
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
随机试题
男孩8岁,7月份在南方水区度暑假,常到水塘游泳。1个月后出现发热,晚上体温达39~39.5℃,且症状重,有时出现烦躁不安;而晨起又降至35~36℃,症状减轻,无寒颤。轻度腹痛、腹泻,大便呈黏液或脓血便。皮肤可见出血点,就诊时持续已2周。体检:T39.5℃,
下列关于眼部抗感染药物禁忌证的描述,正确的是()。
一般来说,企业所得税率为( )。
施工成本管理的成本核算需计算出施工费用的(),并根据成本核算对象,采取适当方法,计算出施工项目的总成本和单位成本。
允许误差可以和抽样误差一样大,也可以比它大或比它小。()
关于我国现有个人贷款业务的特征,下列说法不正确的是()。
随着“一带一路”倡议的推进,我国越来越多的企业走出国门开展对外直接投资。X国疆域辽阔,人口众多,人工和土地成本低。同时经济增长速度名列世界前茅,市场潜力巨大。此外,由于X国和欧盟及英联邦国家关系密切,从X国出口商品遭受西方国家贸易壁垒限制较少。因此,X国成
“好学生”这个概念包括学习好、体育好、品德好等属性,那么这个概念属于()。
青铜是一种合金,它的成分主要是铜和()。
Inbringingupchildren,everyparentwatcheseagerlythechild’sacquisitionofeachnewskill—thefirstspokenwords,thefir
最新回复
(
0
)