首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2019-05-11
52
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
3
α
1
=α
1
,故Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=一2α
1
,即α
1
是矩阵B的属于特征值一2的特征向量。由关系式B=A
5
一4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2得B的三个特征值为μ
1
=一2,μ
2
=1,μ
3
=1。设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
,α
2
,α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为[*]B的全部特征向量为 [*] 其中k
1
≠0,k
2
,k
3
不同时为零。
解析
转载请注明原文地址:https://kaotiyun.com/show/dwV4777K
0
考研数学二
相关试题推荐
解方程(3χ2+2)y〞=6χy′,已知其解与eχ-1(χ→0)为等价无穷小.
若函数f(χ)在[0,1]上二阶可微,且f(0)=f(1),|f〞(χ)|≤1,证明:|f′(χ)|≤在[0,1]上成立.
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
设u=f(χ+y,χ2+y2),其中f二阶连续可偏导,求.
设A为n阶方阵,且A的各行元素之和为0,A*为A的伴随矩阵,A*≠O,则A*x=0基础解系的解向量的个数为______.
记行列式为f(x),则方程f(x)=0的根的个数为()
设A=,计算行列式|A|.
设证明:行列式|A|=(n+1)an.
随机试题
与平行发承包模式相比,施工总承包模式的不同之处在于()。
常用于定性或者定量检测氨基酸存在的试剂是
小儿营养性巨幼红细胞贫血多见于
下列属于第三级预防措施的是()
城市综合管廊工程建设中,应在独立舱室内敷设的有()。
根据以下资料。回答以下题。2008年各级财政共支出城市低保资金393.4亿元,比上年增长41.8%,保障了2330多万城镇贫困人口的基本生活。得到最低生活保障人员中:在职人员82.2万人,占总人数的3.5%,灵活就业人员381.7万人,占总人数的16.3
根据我国法律的规定,下列财产中应适用善意取得的是()。
在Internet中,负责选择合适的路由,使发送的数据分组(Packet)能够正确无误地按照地址找到目的站并交付给目的站所使用的协议的是______。
______CEOKenChungsoldhismajoritystakeinthecompany’sstock,itwastradingforarecord-highof$4.14ashare.
A、IknowmanybusinesspeopleattheBeachsideHotel.B、TheBeachsideistheonlyfavoritehotelformanybusinesspeople.C、Man
最新回复
(
0
)