首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表
(2005年)确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表
admin
2021-01-19
61
问题
(2005年)确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(-2,a,4)
T
,β
3
=(-2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
),由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故秩r(A)<3,从而|A|=-(a-1)
2
(a+2)=0,所以a=1或a=2. 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,故α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,但β
2
=(-2,1,4)
T
不能由α
1
,α
2
,α
3
线性表示,所以a=1符合题意. 当a=-2时,由下列矩阵的初等行变换 [*] 知秩r(B)=2,秩r(B|α
2
)=3,所以方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=-2不符合题意.因此a=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/e084777K
0
考研数学二
相关试题推荐
设二阶实对称矩阵A的一个特征值为λ1=1,属于λ1的特征向量为(1,一1)T,若|A|=一2,则A=______。
若二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2一2x1x3+4x2x3为正定二次型,则λ的取值范围是________.
设三阶矩阵A,B满足关系A-1BA=6A+BA,且A=,则B=_________
椭圆2x2+y2=3在点(1,-1)处的切线方程为________
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。求dz;
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
改变积分次序
设f(x)为连续函数,试证明:若f(x)为奇函数,则f(x)的一切原函数均为偶函数;若f(x)为偶函数,则有且仅有一个原函数为奇函数.
(1987年)积分中值定理的条件是_______,结论是_______.
随机试题
下列哪项不属于人的认识过程()。
患者,女,60岁。喘而胸满闷窒1月,咳嗽痰多黏腻色白,咯吐不利,口黏不渴,苔厚腻色白,脉滑。(假设信息)若该患者见喘促气逆,喉间痰鸣,面唇黯紫,舌质紫暗,苔浊腻,患者可能为兼夹
患者,男,55岁。持续高热(40~41℃),中毒面容,全身不适,咳嗽,咽痛,查体:脉搏缓慢,皮肤玫瑰疹,肝肿大,伴有腹胀腹痛,3天未排便,触诊腹部较硬且紧张,周围血象白细胞总数低下,骨髓象中有伤寒细胞,为减轻患者腹痛、腹胀,护士遵医嘱给予灌肠。保留灌肠
男,72岁。1年来阵发性腹痛,自觉有“气块”在腹中窜动,大便次数增加,近3个月腹胀、便秘,近3天无肛门排气、排便,呕吐物有粪便臭味,伴乏力、低热。禁忌使用的检查是
下列行为中,属于无偿转让的房地产有()。
高度超过()外墙上的栏杆、门窗等较大的金属物应与防雷装置相连。
下列关于2005年城市园林绿化统计分析中,正确的有()项。Ⅰ.华东六省一市的建成区园林绿地率平均值为30%Ⅱ.华东地区的公园个数最多和最少的分别是浙江省和江西省Ⅲ.上海市的游人量高于华东地区的其他六省
乾隆年间,梆子腔名旦()进京轰动剧坛,梆子腔流行全国,发展出各地特色不同的“梆子”,形成庞大的声腔体系。
试论《西厢记》的艺术成就。
设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程。
最新回复
(
0
)