首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表
(2005年)确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表
admin
2021-01-19
63
问题
(2005年)确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(-2,a,4)
T
,β
3
=(-2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
),由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故秩r(A)<3,从而|A|=-(a-1)
2
(a+2)=0,所以a=1或a=2. 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,故α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,但β
2
=(-2,1,4)
T
不能由α
1
,α
2
,α
3
线性表示,所以a=1符合题意. 当a=-2时,由下列矩阵的初等行变换 [*] 知秩r(B)=2,秩r(B|α
2
)=3,所以方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=-2不符合题意.因此a=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/e084777K
0
考研数学二
相关试题推荐
=___________.
设三元二次型χ12+χ22+5χ32+2tχ1χ2-2χ1χ3+4χ2χ3是正定二次型,则t∈_______.
设线性方程组有非零解,则参数a,b,c,d,e应满足条件___________.
设A和B为可逆矩阵,X=为分块矩阵,则X-1=____________。
微分方程+y=1的通解是____________.
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________.
积分∫02dx∫x2e—y2dy=______。
设y=y(x)是由方程2y3一2y2+2xy一x2=1确定的,则y=y(x)的极值点是_________。
设f(x)为连续函数,试证明:F(x)的奇偶性正好与f(x)的奇偶性相反;
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
随机试题
危重症哮喘患者的临床表现,下列哪项不正确()(1998年)
某风湿性心脏病痛人,心功能Ⅳ级,24h尿量375ml,对该病人的治疗护理中应慎重的措施是
下列可作为X线影像信息传递和接受介质的是
患者,男性,35岁。因患精神分裂症常年服用氯丙嗪,症状有所好转,但近日来出现肌肉震颤、动作迟缓、流涎等症状,诊断为氯丙嗪引起的帕金森综合征,采取药物治疗应选用
A.服务性互联网药品交易服务B.非服务性互联网药品交易服务C.非经营性互联网药品信息服务D.经营性互联网药品信息服务根据《互联网药品信息服务管理办法》通过互联网向上网用户无偿提供公开的、共享性药品信息服务活动,属于()。
已知动点的运动方程为x=t,y=2t2。则其轨迹方程为()。
()是一级市场,是发行单位初次发售新债券的市场。
基金的证券选择贡献,是指基金资产实际权重与正常比例之差乘以相应资产类别的市场指数收益率的和。()
甲公司2014年度净利润为32000万元(不包括子公司利润或子公司支付的股利),发行在外普通股30000万股,持有子公司乙公司60%的普通股股权。乙公司2014年度归属于普通股股东的净利润为1782万元,期初发行在外的普通股加权平均数为300万股,当期普通
双眼集合反射的生理意义在于
最新回复
(
0
)