首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是 ( )
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是 ( )
admin
2015-08-17
73
问题
n维向量组a
1
,a
2
…,a
s
(3≤s≤n)线性无关的充要条件是 ( )
选项
A、存在一组全为零的数k
a
,k
2
,…,k
s
,使k
1
a
1
+k
2
a
2
+…+k
s
a
s
=0
B、a
1
,a
2
…,a
s
中任意两个向量都线性无关
C、a
1
,a
2
…,a
s
中任意一个向量都不能由其余向量线性表出
D、存在一组不全为零的数k
a
,k
2
,…,k
s
,使k
1
a
1
+k
2
a
2
+…+k
s
a
s
=0
答案
C
解析
可用反证法证明之.必要性:假设有一向量,如α
s
可由α
1
,α
2
……α
s-1
线性表出,则α
1
,α
2
……α
s
线性相关,这和已知矛盾,故任一向量均不能由其余向量线性表出,充分性:假设α
1
,α
2
……α
s
线性相关
至少存在一个向量可由其余向量线性表出,这和已知矛盾,故α
1
,α
2
……α
s
线性无关.A对任何向量组都有0α
1
+0α
2
+…+0α
s
=0的结论.B必要但不充分,如α
1
=[0,1,0]
T
,α
2
=[1,1,0]
T
,α
3
=[1,0,0]
T
任两个线性无关,但α
1
,α
2
,α
3
线性相关.D必要但不充分.如上例α
1
+α
2
+α
3
≠0,但α
1
,α
2
,α
3
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/e1w4777K
0
考研数学一
相关试题推荐
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________.
已知3阶矩阵A=有一个二重特征值,求a,并讨论A是否相似于对角矩阵.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设3阶矩阵A的特征值为一1,1,1,对应的特征向量分别为α1=(1,一1,1)T,α2=(1,0,一1)T,α3=(1,2,一4)T,求A100.
随机试题
某市发生一起抢劫杀人案,经初步侦察,犯罪嫌疑人为A、B、C。现已知:①如果A无罪或B有罪,那么,C有罪;②只有A有罪,C才有罪。请问:A是否有罪?写出推导过程。(设:A表示“A有罪”,表示“A无罪”,其他类同。)
(2008年案例分析第66—70题)2002年6月6日,甲与乙签订了一份开发用于特种设备的变频装置的技术合同,双方约定乙在合同生效后的3个月内将该变频装置的图纸一份及样品一套送交甲,专利权归甲所有,甲支付乙开发费用100万元。2002年8月,甲取得该变频装
工作量法计提折旧的特点是每年提取的折旧额都相等。()
M公司的目标资本结构为40%的负债、10%的优先股和50%的权益资本,已知负债筹资的税前成本为9%,优先股成本为10%,权益资本成本为15.6%,公司适用25%的所得税税率,则M公司的加权平均资本成本为()。
若企业采用售后回购的方式融入的资金全部用于自建生产厂房,则其所售商品回购价与售价之间的差额,应在售后回购期间内计入()。
青少年心理发展正处于不成熟到成熟的过渡阶段,哪些特点容易造成他们的品德不良?
我国社会主义法律的运行过程主要包括()
[A]Thefirstandmoreimportantistheconsumer’sgrowingpreferenceforeatingout;consumptionoffoodanddrinkinplacesoth
阅读下列说明,回答问题1至问题3,将解答填入对应栏内。[说明]某学校拟开发一套校友捐赠管理系统,以便对校友的捐赠资金进行管理。[需求分析]校友可以向学校提出捐赠申请,说明捐赠的金额、捐赠类型和使用方式。捐赠类型包括一次性捐赠
最新回复
(
0
)