首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
admin
2020-03-01
86
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)
T
,则A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
+α
2
,α
2
+α
3
,α
1
+α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
方程组Ax=0的基础解系只含一个解向量,所以四阶方阵A的秩r(A)=4一1=3,则其伴随矩阵A
*
的秩r(A
*
)=1,于是方程组A
*
x=0的基础解系含有三个线性无关的解向量。
又A
*
(α
1
,α
2
,α
3
,α
4
):A
*
A=|A|E=0,所以向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解。将(1,0,2,0)
T
代入方程组Ax=0可得α
1
+2α
3
=0,这说明α
1
可由向量组α
2
,α
3
,α
4
线性表出,而向量组α
1
,α
2
,α
3
,α
4
的秩等于3,所以向量组α
2
,α
3
,α
4
必线性无关。所以选C。
事实上,由α
1
+2α
3
=0可知向量组α
1
,α
2
,α
3
线性相关,选项A不正确;显然,选项B中的向量都能被α
1
,α
2
,α
3
线性表出,说明向量组α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性相关,选项B不正确;而选项D中的向量组含有四个向量,不是基础解系,所以选型D也不正确。
转载请注明原文地址:https://kaotiyun.com/show/e3A4777K
0
考研数学二
相关试题推荐
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=O.
求下列不定积分:
改变积分次序并计算
证明I=sinx2dx>0。
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=O.
曲线上对应于t=1的点处的法线方程为__________.
设f(x)可导f(x)=0,f’(0)=2,,则当x→0时,F(x)是g(x)的()
设随机变量X与Y相互独立,且X在区间(0,1)上服从均匀分布,Y的概率分布为P{Y=0}=P{Y=1}=P{Y=2}=,记FZ(z)=的分布函数,则函数FZ(z)的间断点的个数为()
设,则t=0对应的曲线上点处的法线为_________
在数轴上的区间[0,a]内任意独立地选取两点M与N,求线段MN长度的数学期望.
随机试题
某大型化工厂新建液氨储罐一座,公司在储罐运行前按照相关的安全管理规定,根据相关法律法规,下列规定中正确的有()。
高血压脑出血最好发的部位是_______。
结核性腹膜炎患者腹胀的常见原因是
下列说法正确的是
南京国民政府立法指导思想的核心是()。
地下管线探查是通过现场实地调查和仪器探测的方法探寻各种管线的()。
责任转账的本质,就是按照责任成本的责任归属将其结转给()。
荷兰小画派
本题为选做题,请在Ⅰ、Ⅱ两道试题中选取其中一道解答,若两题都回答,只按第Ⅰ道试题的成绩记人总分。选做题I以下是有关世界格局变化的材料:材料1我们必须认识到,苏联仍然是美国的一个非常强大、有力和咄咄逼人的竞争者。现在,当我
A.holeB.utteringC.crackD.quietE.betrayedF.flatteredG.concentrateH.speakingI.wanderJ.noisyKalthough
最新回复
(
0
)