首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
admin
2020-03-01
62
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)
T
,则A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
+α
2
,α
2
+α
3
,α
1
+α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
方程组Ax=0的基础解系只含一个解向量,所以四阶方阵A的秩r(A)=4一1=3,则其伴随矩阵A
*
的秩r(A
*
)=1,于是方程组A
*
x=0的基础解系含有三个线性无关的解向量。
又A
*
(α
1
,α
2
,α
3
,α
4
):A
*
A=|A|E=0,所以向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解。将(1,0,2,0)
T
代入方程组Ax=0可得α
1
+2α
3
=0,这说明α
1
可由向量组α
2
,α
3
,α
4
线性表出,而向量组α
1
,α
2
,α
3
,α
4
的秩等于3,所以向量组α
2
,α
3
,α
4
必线性无关。所以选C。
事实上,由α
1
+2α
3
=0可知向量组α
1
,α
2
,α
3
线性相关,选项A不正确;显然,选项B中的向量都能被α
1
,α
2
,α
3
线性表出,说明向量组α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性相关,选项B不正确;而选项D中的向量组含有四个向量,不是基础解系,所以选型D也不正确。
转载请注明原文地址:https://kaotiyun.com/show/e3A4777K
0
考研数学二
相关试题推荐
设α=(a1,2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m.存在常数t.使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
求下列不定积分:
已知矩阵A的伴随矩阵A*=diag(1,1,1,8),且ABA-1=BA-1+3E,求B。
设二阶常系数线性微分方程y〞+ay′+by=ceχ有特解y=e2χ+(1+χ)eχ,确定常数a,b,c,并求该方程的通解.
设f(χ)=χ-sinχcosχcos2χ,g(χ)=,则当χ→0时f(χ)是g(χ)的
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有(x,y)dxdy=____________.
落在平静水面的石头,产生同心波纹,若最外一圈波半径的增大率总是6m/s,问在2s末扰动水面面积的增大率为________m2/s.
设f1(x)=,f2(x)=f1[f1(x)],fk+1(x)=f1[fk(x)],k=1,2,…,则当n>1时,fn(x)=()
设总体X和Y相互独立,且都服从N(μ,σ2),分别为总体X与Y的样本容量为n的样本均值,则当n固定时,概率P{||>σ}的值随σ的增大而()
随机试题
津液能够滋养濡润
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联
Itisa______ridefromhishometotheshoppingcenter.
在近端小管中滤出的HCO3-被重吸收的方式为
幼儿期年龄的划分应是
A.一般不引起细胞病变效应B.细胞内形成多型核巨细胞C.易发生基因重排D.主要通过血液传播E.细胞核内形成嗜酸性包涵体甲肝病毒
属于给水处理构筑物的是()。
牛顿看到成熟的苹果从树上掉下来,研究它的原因,发现了万有引力的秘密,开创了物理学的一个新时代。瓦特从水开时蒸汽顶起壶盖的现象中受到启发,发明了蒸汽机。马克思从人们每天都在进行的亿万次的商品交换中发现了现代资本主义发生、发展和灭亡的规律,为无产阶级社会主义革
一般情况下,母亲与照顾关怀相联结,而如果母亲又常常与跳舞相联结,那么跳舞就可能会成为一种()
A、 B、 C、 C
最新回复
(
0
)