首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,ak-1线性表示.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,ak-1线性表示.
admin
2021-02-25
57
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且a
1
≠0,证明存在某个向量a
k
(2≤k≤m),使a
k
能由a
1
,a
k-1
线性表示.
选项
答案
因为a
1
,a
2
,…,a
m
线性相关,所以存在不全为零的数l
1
,l
2
,…,l
m
使l
1
a
1
+l
2
a
2
+…+l
m
a
m
=0成立.由于l
1
,l
2
,…,l
m
不全为零,取最后一个不为零的数l
k
,即:l
k+1
=l
k+2
=…=l
m
=0,则k≠1,否则l
1
a
1
=0与a
1
≠0矛盾.所以由l
1
a
1
+l
2
a
2
+…+l
k
a
k
=0可得: a
k
=[*],从而可知存在某个向量口a
k
(2≤k≤m),使a
k
能由a
1
,…,a
k-1
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/e484777K
0
考研数学二
相关试题推荐
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
[*]
设f(x)连续,且=2,则下列结论正确的是().
已知,设A=αTβ,其中αT是α的转置,则An=_____________.
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
设三阶方阵A,B满足A—1BA=6A+BA,且,则B=______。
随机试题
下面关于哈希表的说法中,正确的是_______。
有关毒性反应的叙述正确的是( )。
在下列四个选项中,说法不正确的有()。
各种建筑构件空气声隔声性能的单值评价量是:
将叶轮与电动机的转子直联成一体,浸没在被输送液体中,属离心式泵的一种,又称为无填料泵,该泵为()。
自然人发现信息处理者违反法律、行政法规的规定或者双方的约定处理其个人信息的,有权请求信息处理者及时()。
人体在晚上分泌的镇痛荷尔蒙比白天多,因此,在晚上进行手术的外科病人需要较少的麻醉剂。既然较大量的麻醉剂对病人的风险更大,那么,如果经常在晚上做手术,手术的风险也就可以降低了。下列哪项如果为真,最能反驳上述结论?
WorkingMothersCarefullyconductedresearchesthathavefollowedthechildrenofworkingmothershavenotbeenabletoshow
Thescientificandmedicalprizeshaveprovedtobetheleast______,whilethoseforliteratureandpeacebytheirverynature
TheBusinessmanoftheCenturyLedbypeoplewhocouldtakeanideaandturnitintoanindustry,ourworldreachedunheard-
最新回复
(
0
)