首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,ak-1线性表示.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,ak-1线性表示.
admin
2021-02-25
64
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且a
1
≠0,证明存在某个向量a
k
(2≤k≤m),使a
k
能由a
1
,a
k-1
线性表示.
选项
答案
因为a
1
,a
2
,…,a
m
线性相关,所以存在不全为零的数l
1
,l
2
,…,l
m
使l
1
a
1
+l
2
a
2
+…+l
m
a
m
=0成立.由于l
1
,l
2
,…,l
m
不全为零,取最后一个不为零的数l
k
,即:l
k+1
=l
k+2
=…=l
m
=0,则k≠1,否则l
1
a
1
=0与a
1
≠0矛盾.所以由l
1
a
1
+l
2
a
2
+…+l
k
a
k
=0可得: a
k
=[*],从而可知存在某个向量口a
k
(2≤k≤m),使a
k
能由a
1
,…,a
k-1
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/e484777K
0
考研数学二
相关试题推荐
[*]
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
依题意,如右图所示,D为右半单位圆,且关于x轴[*]
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P一1AP=__________.
随机试题
根据CAPM模型,下列说法错误的是()。
腹膜刺激三联征是指_________、_________、_________。
肾病综合征最常用的细胞毒药物是
施工图预算的编制依据一定包括()。
某企业2010年企业所得税年度纳税申报的应纳税所得额为一120万元(假定以前年度均盈利并缴纳企业所得税)。2011年7月税务机关对该企业的2010年度纳税情况进行税务稽查发现如下问题:(1)2010年度6月企业以上年工资总额的10%标准为全体职工支付
物业服务企业对于《业主临时公约》、《业主公约》、《房屋及设备设施使用说明书》以及关于房屋装修、环境卫生、绿化等公共秩序的规章制度,应当利用()等形式.向业主广泛宣传告知。
安徽省的“十一五”旅游发展战略中的总体战略不包括()。
“师者,所以传道、授业、解惑也”,这句话出自()。
2017年3月19日完工的世界最大跨度的三塔铁路斜拉桥是()。
StudentexpeditionsdoagreatdealofgoodworkontheArcticislandsbutfromtimetotimecausetroubleinthehuts,probably
最新回复
(
0
)