首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是( )
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是( )
admin
2019-04-09
97
问题
设f=x
T
Ax,g=x
T
Bx是两个n元正定二次型,则下列未必是正定二次型的是( )
选项
A、x
T
(A+B)x
B、x
T
A
—1
x
C、x
T
B
—1
x
D、x
T
ABx
答案
D
解析
因为f是正定二次型,A是n阶正定阵,所以A的n个特征值λ
1
,λ
2
,…,λ
n
都大于零。设
Ap
j
=λ
j
p
j
,则A
—1
p
j
=
p
j
,A
—1
的n个特征值
(j=1,2,…,n)必都大于零,这说明A
—1
为正定阵,x
T
A
—1
x为正定二定型。
同理,x
T
B
—1
x为正定二次型,对任意n维非零列向量x都有x
T
(A+B)x=x
T
Ax+x
T
Bx>0, 这说明x
T
(A+B)x为正定二次型。由于两个同阶对称阵的乘积未必为对称阵,所以x
T
ABx未必为正定二次型。
转载请注明原文地址:https://kaotiyun.com/show/e4P4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设f(x)二阶连续可导,f’(0)=0,且=-1,则().
求曲线y=x2-2x与直线y=0,x=1,x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
已知随机变量X1,X2,…,Xn相互独立,且都服从标准正态分布,Y1=X1,Y2=X2—则Y1一Y2服从________分布,参数为________。
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设f(x)二阶连续可导,求极限
设则A与B().
随机试题
社会保障基金的监管原则是什么?
急性坏死性肠炎肠伤寒穿孔
一个系统是稳定的,当遇到阶跃扰动时,在过渡过程结束后,被控量应趋于()。
不属于金属基复合材料的是()。
采取铺设砂垫层,塑料多孔排水板等工程措施,使软基表层或内部形成水平或垂直排水通道,加速土中水分的排除,使土固结的地基处理方法为()。
某人有1200元,拟投入报酬率为8%的投资机会,经过( )年才可使现有货币增加1倍。
通过新资源使得至少有一个人的福利水平有所提高,称为()。
《导游人员管理条例》规定,不得颁发导游证的情形主要有()。
若游客要求购买景区地摊商品,景区导游员应()。
A.particularlyB.correlatedC.averageD.peaceE.singleF.callsG.ordinaryH.engageI.notesJ.restK.shownL.exactly
最新回复
(
0
)