首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2018-11-20
63
问题
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.
(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0. 设A的对角线元素为λ
1
,λ
2
,…,λ
n
.则AB的(i,j)位元素为λ
i
b
ij
,而BA的(i,j)位元素为λ
i
b
ij
.因 为AB=BA,得 λ
i
b
ij
=λ
j
b
ij
因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由(1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j. CA的(i,j)位元素为c
ii
,AC的(i,j)位元素为c
jj
.于是c
ii
=c
jj
.这里的i,j是任意的,从而 c
11
=c
22
=…=c
nn
.
解析
转载请注明原文地址:https://kaotiyun.com/show/e5W4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一证明:当x≥0时,e一x≤f(x)≤1.
设事件A,B,C两两独立,满足ABC=,P(A)=P(B)=P(C),且P(A+B+C)=,则P(A)=________.
设P(B)=0.5,P(A一B)=0.3,则P(A+B)=________.
计算行列式
设n阶矩阵A满足A2+A=3E,则(A一3E)一1=________.
设二维非零向量α不是二阶方阵A的特征向量.若A2a+Aα一6α=0,求A的特征值,讨论A可否对角化;
设矩阵若A有一个特征值为3,求a;
设A为n阶矩阵,且Ak=0,求(E一A)一1.
设求:|一2B|;
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
随机试题
预防和早期发现内膜癌的措施不包括()
本病例最可能的诊断为下列急救措施不妥当的是
患者脘腹痞满疼痛,下痢赤白,里急后重,舌苔黄腻,脉沉实。治疗应选用
在下列常用的市场预测方法中,仅适用于短期预测范围内的方法是()。
针对旅游活动出现的新趋势,导游服务必须有新的改观,以适应未来旅游业发展的需要,未来旅游活动发展趋势是()。
下列哪些选项属于我国在政府体制内的家庭社会工作?( )
以下哪句是没有语病的?()
“谈梅生津”属于______反射。(2014.湖北)
材料一:2016年春节期间,媒体上、公众间对于年味变淡的讨论似乎少了许多。由于互联网对人们日常生活的持续影响与渗透,人们似乎已渐渐接受互联网对传统春节的影响与改变。办年货,不再去市场、实体商店,而是通过网购完成;写春联,也不再自己绞尽脑汁想了,而
在关系数据库设计中,关系模式设计属于
最新回复
(
0
)