首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 证明:.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 证明:.
admin
2015-07-24
37
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.
证明:
.
选项
答案
分别令x=0,x=1,得 f(0)=f(c)一f’(c)c+[*]c
2
,ξ
1
∈(0,c), f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1), 两式相减,得f’(c)=f(1)一f(0)+[*],利用已知条件,得 |f’(c)|≤2a+[*][c
2
+(1一c)
2
], 因为c
2
+(1一c)
2
≤1,所以|f’(c)|≤2a+[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/e9w4777K
0
考研数学一
相关试题推荐
e1/2(1+ln2)
设f(x)=∫01-cosxsint2dt,g(x)=x5/5+x6/6,则当x→0时,f(x)是g(x)的().
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在且非零,证明:存在ξ∈(1,2),使得ln2/∫12f(t)dt=1/ξf(ξ).
求函数f(x,y)=(x2+2x+y)ey的极值.
求函数y=excosx的极值.
已知极限.试确定常数n和c的值.
求的最大项.
设对一切的x,有f(x+1)=—2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性。
求{}的最大项.
随机试题
科技在价值上可能是中立的。()
______dictionaryisenoughforme.
头颅外伤昏迷患者摄影时应选用的体位是
男性,60岁,间断无痛性肉眼血尿3个月,尿出蚯蚓状血块收住院。作膀胱镜检查结果:膀胱未见到肿瘤,右侧输尿管口可见活动性出血,有小凝血块。
对针灸学进行第三次总结的著作是
在对股票进行基本面分析时,通常不会考虑的因素是()。
大额可转让定期存单最早产生于美国。美国的《Q条例》规定,商业银行对活期存款不能支付利息,定期存款不能突破一定限额。20世纪60年代,美国市场利率上涨,高于《Q条例》规定的上限,资金从商业银行流入金融市场。为了吸引客户,商业银行推出可转让大额定期存单。购买存
145,120,101,80,65,()
有一批商品需要装箱运输。商品每件均为10厘米×40厘米×80厘米的长方体。包装箱为边长为1.2米的立方体,一个包装箱最多能装()件商品。
简述唐朝主要立法活动。
最新回复
(
0
)