首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,X2,…,Xn为来自总体X的简单随机样本,且X的概率分布为 其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求 (1)未知参数θ的最大似然估计量; (2)未知参数θ的矩估计量; (3)当样本值
设X1,X2,…,Xn为来自总体X的简单随机样本,且X的概率分布为 其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求 (1)未知参数θ的最大似然估计量; (2)未知参数θ的矩估计量; (3)当样本值
admin
2018-09-20
71
问题
设X
1
,X
2
,…,X
n
为来自总体X的简单随机样本,且X的概率分布为
其中0<θ<1.分别以v
1
,v
2
表示X
1
,X
2
,…,X
n
中1,2出现的次数,试求
(1)未知参数θ的最大似然估计量;
(2)未知参数θ的矩估计量;
(3)当样本值为1,1,2,1,3,2时的最大似然估计值和矩估计值.
选项
答案
(1)样本X
1
,X
2
,…,X
n
中1,2,3出现的次数分别为v
1
,v
2
,n一v
1
一v
2
,则似然函数和似然方程为 [*] 故似然方程的唯一解就是参数θ的最大似然估计量 [*] (2)总体X的数学期望为 EX=θ
2
+4θ(1一θ)+3(1一θ)
2
. 在上式中用样本均值[*]估计数学期望EX,可得θ的矩估计量 [*] (3)对于样本值1,1,2,1,3,2,由上面得到的一般公式,可得最大似然估计值 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eAW4777K
0
考研数学三
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
设A为n阶矩阵,若Ak一1α≠0,而Akα=0.证明:向量组α,Aα,…,Akk一1α线性无关.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
设A为n阶矩阵,证明:r(A*)=其中,2≥2.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
求极限
设随机变量X,Y同分布,X的密度为f(x)=设A={X>a)与B={Y>a)相互独立,且P(A+B)=.求:
设二维随机变量(X,Y)的联合密度为f(x,y)=求c;
随机变量(X,Y)的联合密度函数为f(x,y)=求(x,y)落在区域x2+y2≤内的概率.
设(X,Y)的联合概率密度为.f(x,y)=求:Z=2X一Y的密度函数.
随机试题
输卵管外侧游离端的结构是()
与犬尿石症形成无关的病因是()。
四环素牙外脱色效果不佳的原因为
脂肪酸合成的原料乙酰CoA从线粒体转移至胞液的途径是
在我国,对土地实行()。
关于主合同与从合同,下列表述中错误的有()。
传言某银行支行因为一笔违规批贷可能导致重大损失,于是记者王某找到他在该支行的朋友张某欲进行采访。在这种情况下,()。
《南方周末》2005年11月24日报道了一则《全国人大代表集中轮训学习如何代表民意》的新闻,报道称80余名第十届全国人大代表集中于深圳人民大厦学习如何审议工作报告、如何提高议案建议质量、和谐社会与法治、十一五规划辅导报告、加强全国人大的制度建设等问题。参训
昨天是小红的生日,后天是小伟的生日。他俩的生日距星期天同样远。如果上述断定为真,那么,今天是星期几?
请在文档中插入“℃”符号。℃
最新回复
(
0
)