首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x2+16y-4y2-2(万元).已知生产这两种产品时,每件产品都要消耗原料2 000kg,现有该原料12 000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x2+16y-4y2-2(万元).已知生产这两种产品时,每件产品都要消耗原料2 000kg,现有该原料12 000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
admin
2022-11-02
85
问题
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x
2
+16y-4y
2
-2(万元).已知生产这两种产品时,每件产品都要消耗原料2 000kg,现有该原料12 000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
选项
答案
根据题意,即求函数L(x,y)=6x-x
2
+16y-4y
2
-2在0<x+y≤6下的最大值.L(x,y)的唯一驻点为(3,2),令F(x,y,λ)=6x-x
2
+16y-4y
2
-2+λ(x+y-6),由F’
x
=6-2x+λ=0,F’
y
=16-8y+λ=0,x+y-6=0,得x=19/5,y=11/5,根据题意,x,y,只能取正整数,故(x,y)的可能取值为L(4,2)=22,L(3,3)=19,L(3,2)=23,故当x=3,y=2时利润最大,最大利润为23万元.
解析
转载请注明原文地址:https://kaotiyun.com/show/eBC4777K
0
考研数学三
相关试题推荐
设f(x)=求f’(x).
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aa1=2α1+α2—α3,Aα2=α1+2α2+α3,Aα3=一α1+α2+2α3.(1)计算行列式|A+E|;(2)求秩r(3E—A);(3
求
设B是n×n矩阵,A是n阶正定阵,证明:(1)r(BTAB)=r(B).(2)BTAB也是正定阵的充要条件为r(B)=n.
设f’(0)=1,且f(0)=0,求极限
设方程组,有无穷多个解,a1=,a2=,a3=为矩阵A的分别属于特征值λ11,λ1=-2,λ3=-1的特征向量.求|A*+3E|.
设有微分方程y’-2y=q(x),其中试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足微分方程,且满足条件y(0)=0.
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)出(x≥0).
设函数z=f(u),方程u=φP(u)+P(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求P(y)+P(x).
求f(x,y,z)=2x+2y一z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
随机试题
甲公司与乙公司签订一份技术开发合同,未约定技术秘密成果的归属。甲公司按约支付了研究开发经费和报酬后,乙公司交付了全部技术成果资料。后甲公司在未告知乙公司的情况下,以普通使用许可的方式许可丙公司使用该技术,乙公司在未告知甲公司的情况下,以独占使用许可的方式许
画出单相半波整流波形图。
写出正则表达式([^+]*)对应字符串((first)(a+b)(second(a-b)))的匹配部分:_______。
“野火烧不尽,春风吹又生。”中运用的修辞方式是()
血栓闭塞性脉管炎热毒证的治法是
如图4—3—30所示,均质杆OA长为l,质量为m,以角速度ω及角加速度α绕O轴转动,则惯性力系的简化结果为()。
()是利用矿井主要通风机的风压,借助导风设施把新鲜空气引入掘进工作面。
经深圳证券交易所同意,会员可将其设立的交易单元提供给证券投资基金管理公司、保险资产管理公司等机构使用。()
下列各句中,没有语病的一句是()
阅读下列C程序和程序说明,将应填入(n)处的字句写在对应栏内。【说明】应用Prim算法求解连通网络的最小生成树问题。请阅读程序后填空。constintMaxInt=INTMAX;//INTMAX的值在<limits.h>
最新回复
(
0
)