首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
admin
2017-09-15
36
问题
设A为n阶非零矩阵,且A
2
=A,r(A)=r(0<r<n).求|5E+A|.
选项
答案
因为A
2
=A[*]A(E-A)=O[*]r(A)+r(E-A)=n[*]A可以对角化. 由A
2
=A,得|A|.|E-A|=0,所以矩阵A的特征值为λ=0或1. 因为r(A)=r且0<r<n,所以0和1都为A的特征值,且λ=1为r重特征值,λ=0为n-λ重特征值, 所以5E+A的特征值为λ=6(r重),λ=5(n-r重),故|5E+A|=5
n-r
×6
r
.
解析
转载请注明原文地址:https://kaotiyun.com/show/eBk4777K
0
考研数学二
相关试题推荐
设A,B为同阶可逆矩阵,则().
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
随机试题
马克思和恩格斯之间的友谊可以作为哪种交往的典范()
在进行企业银行存款清查时,发现银行存款日记账余额与银行对账单余额不一致,其原因肯定是存在未达账项。
Kindnessisthemostimportant______amancanhave.
A.行痹B.痛痹C.着痹D.旭痹痹病关节剧痛、肿大、僵硬、变形,屈伸受限,其诊断是
主要用于防止间日疟复发和传播的药物是()
阅读下面的材料,按要求作文。不是每一粒种子都能长成大树,不是每一朵花都能结出果实。同样的,不是每一个人都能享有完美的人生,不是每一颗心灵都能获得宁静,也不是每一份情感都能走向永恒。缺憾,是一种常态,是理应坦然面对的存在。综合上述材料所引发的
下列语句中,不正确的一个是______。
在一个长度为n的线性表中插入一个元素,最好情况下需要移动的数据元素数目
Languagelearningbeginswithlistening.Individualchildrenvarygreatlyintheamountoflisteningtheydobeforetheystarts
Readthetextbelowaboutbusinessschools.Inmostofthelines(41-52),thereisoneextraword.Itiseithergrammatically
最新回复
(
0
)