首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年)设χ∈(0,1),证明 (1)(1+χ)ln2(1+χ)<χ2; (2)
(1998年)设χ∈(0,1),证明 (1)(1+χ)ln2(1+χ)<χ2; (2)
admin
2019-08-01
63
问题
(1998年)设χ∈(0,1),证明
(1)(1+χ)ln
2
(1+χ)<χ
2
;
(2)
选项
答案
(1)令φ(χ)=(1+χ)ln
2
(1+χ)-χ
2
,φ(0)=0 φ′(χ)=ln
2
(1+χ)+2ln(1+χ)-2χ,φ′(0)=0 [*] 于是φ〞(χ)在(0,1)内严格单调减少,又φ〞(0)=0,所以在(0,1)内φ〞(χ)<0.于是φ′(χ)在(0,1)内严格单调减少,又φ′(0)=0,故在(0,1)内φ′(χ)<0.故φ(χ)在(0,1)内严格单调减少.又φ(0)=0,故在(0,1)内φ(χ)<0. [*] 由(1)知f′(χ)<0,(当χ∈(0,1)),于是可知f(χ)在(0,1)上严格单调减少,f(1)=[*]一1,故当χ∈(0,1)时. f(χ)=[*] 不等式左边证毕.又 [*] 故当χ∈(0,1)时,f(χ)=[*]不等式右边证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/eDN4777K
0
考研数学二
相关试题推荐
已知y=∫11①其中t=t(x)由②确定,求
说明下列事实的几何意义:(Ⅰ)函数f(x),g(x)在点x=x0处可导,且f(x0)=g(x0)f’(x0)=g’(x0);(Ⅱ)函数y=f(x)在点x=x0处连续,且有
设a1>0,an+1=(n=1,2,…),求an.
设Ab=C,证明:(1)如果B是可逆矩阵,则A的列向量和C的列向量组等价.(2)如果A是可逆矩阵,则B的行向量组和C的行向量组等价.
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
已知齐次方程组(Ⅰ)解都满足方程x1+x2+x3=0,求a和方程组的通解.
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
设n>0,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
(94年)如图2.9所示,设曲线方程为.梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
随机试题
下列关于社会工作的理解中,与国际上通行的社会工作比较接近的是()。
Idisagreethatthesolutiontoego-basedproblemsistobelittle,eliminate,ortranscendtheegoitself.
A.牡蛎B.羚羊角C.代赭石D.罗布麻善治肝阳上亢兼小便不利的药为
后头部疼痛,痛引项背者多为
吴某向人民法院提起行政诉讼,法院以向上级请示为由一直未予任何答复,吴某应当如何处理?()
材料一:一对夫妻开了家烧酒店。丈夫是个老实人,为人真诚、热情,烧制的酒也好,人称“小茅台”。有道是“酒香不怕巷子深”,一传十,十传百,酒店生意兴隆,常常供不应求。为了扩大生产规模,丈大决定外出购买设备。临行前,他把酒店的事都交给了妻子。几天后,丈夫归来,妻
( )对于鸵鸟相当于梵蒂冈对于( )
35岁男性患者,患慢性肾炎已4年,加重伴少尿1周。血压180/100mmHg,内生肌酐清除率8.7ml/min。诊断为慢性肾小球肾炎慢性肾衰竭尿毒症期。对上述高危项目应选择哪一项应急处理措施
Drivingthroughsnowstormonicyroadsforlongdistancesisamostnerve-rackingexperience.Itisaparadoxthatthesnow,com
关于分布式数据库,下列说法错误的是()。
最新回复
(
0
)