首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax一β的通解为k(1,2,3,0)T+(1,1,1,1)T,其中k为任意常数,又矩阵B=(α3,α2,α1,β一α4),求方程组Bx=α1一α2的通解.
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax一β的通解为k(1,2,3,0)T+(1,1,1,1)T,其中k为任意常数,又矩阵B=(α3,α2,α1,β一α4),求方程组Bx=α1一α2的通解.
admin
2020-10-21
72
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,α
1
,α
2
,α
3
,α
4
是4维列向量,若方程组Ax一β的通解为k(1,2,3,0)
T
+(1,1,1,1)
T
,其中k为任意常数,又矩阵B=(α
3
,α
2
,α
1
,β一α
4
),求方程组Bx=α
1
一α
2
的通解.
选项
答案
由方程组Ax=β的通解为k(1,2,3,0)
T
+(1,1,1,1)
T
,得4一R(A)=1,即R(A)=3; 由此可知,α
1
,α
2
,α
3
线性相关,若R(α
1
,α
2
,α
3
)≤1,则R(α
1
,α
2
,α
3
,α
4
)=R(A)≤2,与R(A)=3矛盾.故R(α
1
,α
2
,α
3
)=2. 又B=(α
3
,α
2
,α
1
,β一α
4
)=(α
3
,α
2
,α
1
,α
1
|α
2
+α
3
),所以R(B)=R(B[*]α
1
—α
2
)=2,于是方程组Bx=α
1
—α
2
有解,且Bx=0有4—R(B)=2个线性无关的解向量. 由 [*] 知(3,2,1,0)
T
是Bx=0的解. 由 [*] 知(1,1,1,一1)
T
是Bx=0的解. 由 [*] 知(0,—1,1,0)
T
是Bx=α
1
—α
2
的一个解. 故方程组Bx=α
1
—α
2
的通解为 x=k
1
(3,2,1,0)
T
+k
2
(1,1,1,—1)
T
+(0,—1,1,0)
T
, 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/eF84777K
0
考研数学二
相关试题推荐
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x0,y0)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是
对二元函数z=f(χ,y),下列结论正确的是().
设二阶线性常系数齐次微分方程y"+by’+y=0的每一个解y(x)都在区间(0,+∞)上有界,则实数b的取值范围是()
在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
设曲线y=y(x)过(0,0)点,M是曲线上任意一点,MP是法线段,P点在x轴上,已知MP的中点在抛物线2y2=x上,求此曲线的方程.
计算积分,其中D是由直线y=2,y=0,x=-2及曲线x=-所围成的区域.
设区域D是由L:与x轴围成的区域,则=___。
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴。计算积分23.
随机试题
A、①B、②C、③D、④B
野生植物经营利用管理的具体制度不包括()
下列哪一项对心瓣膜功能的叙述是错误的()
上消化道呕出大量鲜红色血且不易控制的常见病因为
本病最可能诊断检查结果:类风湿因子弱阳性,血沉120mm/h,IgG19g/L,抗核抗体阳性,C3及CH50降低,抗双链DNA抗体增高。本例首选药物
女,55岁。气促、腹胀进行性加重2年。既往有结核病病史10余年。查体:BP90/70mmHg,心界不大,心率87次/分,心律齐,心音减低,可闻及心包叩击音。腹膨隆,肝肋下5cm,脾肋下未触及,移动性浊音阳性。最可能的诊断是
依据《建设工程质量管理条例》,()在建设工程竣工验收后,应及时向建设行政主管部门或其他有关部门移交建设项目档案。
已知x为实数,若x3+x2+x+1=0,则x97+x98+…+x103=()
若有以下程序#includemain(){inta=6,b=0,c=0;for(;a&&(b==0);){b+=a;a-=c++;}printf("%d,%d,%d\n",a,b,c);}则程序的输出结果是(
ComparingYourselftoOthers:It’sNotAllBad"Tocompareistodespair,"thesayinggoes,andI’vegenerallyfoundittob
最新回复
(
0
)