首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,齐次方程组Ax=0的通解为c(1,0,一3,2)T,证明α2,α3,α4是A*x=0的基础解系.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,齐次方程组Ax=0的通解为c(1,0,一3,2)T,证明α2,α3,α4是A*x=0的基础解系.
admin
2019-07-10
98
问题
设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,A
*
为A的伴随矩阵,齐次方程组Ax=0的通解为c(1,0,一3,2)
T
,证明α
2
,α
3
,α
4
是A
*
x=0的基础解系.
选项
答案
Ax=0的通解为c(1,0,一3,2)
T
表明了: ①4一r(A)=1,即r(A)=3,于是r(A
*
)=1,A
*
x=0的基础解系应该由3个线性无关的解构成. ②α
1
一3α
3
+2α
4
=0.r(A)=3,则|A|=0,得A
*
A=0.于是α
1
,α
2
,α
3
,α
4
都是A
*
x=0的解.因为α
1
一3α
3
+2α
4
=0,所以α
1
可以用α
3
,α
4
线性表示.于是r(α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
)=r(A)=3,α
2
,α
3
,α
4
是A
*
x=0的3个线性无关的解,构成A
*
x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/eTJ4777K
0
考研数学三
相关试题推荐
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
10件产品有3件次品,7件正品,每次从中任取1件,取后不放回,求下列事件的概率:第三次才取得次品;
设A,B为两个随机事件,且P(A)=0.7,P(A—B)=0.3,则
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设A,B为n阶矩阵,求P·Q;
设有三个线性无关的特征向量,求x,y满足的条件.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
求微分方程x2y′+xy=y2满足初始条件y(1)=1的特解.
随机试题
保护环境是
食管化学性烧伤患者,如有早期狭窄征象.即应进行
葡萄胎患者阴道流血的特点是
设计方案优选最常用的方法是( )。
假设某国2013年的各项经济指标如下:国民生产总值4780亿美元;年底未清偿外债余额为580亿美元,其中大约有60%的债务从美国借入,并且短期外债达到65%;当年货物服务出口总额为700亿美元;当年外债还本付息总额为350亿美元。根据上述资料,回答下列问题
_____coal,themostimportantnaturalfuelsarethegasandoil.
在艾里克森看来,成年中期的主要发展任务是
A、 B、 C、 D、 B由已知AX+2B=BA+2X,得AX-2X=BA-2B,即(A-2E)X=B(A-2E)故X=(A-2E)-1B(A-2E),于是X4=(A-2
Youwillheartwoconversations.Writedownonewordornumberinthenumberedspacesontheformsbelow.CONVERSATION1(Que
Amarketiscommonlythoughtofasaplacewherecommoditiesareboughtandsold.Thusfruitandvegetablesaresoldwholesale
最新回复
(
0
)