首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(1,-1,1,-1)T是线性方程组 的一个解,试求 (1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足x2=x3的全部分.
已知(1,-1,1,-1)T是线性方程组 的一个解,试求 (1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足x2=x3的全部分.
admin
2021-11-09
46
问题
已知(1,-1,1,-1)
T
是线性方程组
的一个解,试求
(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;
(2)该方程组满足x
2
=x
3
的全部分.
选项
答案
将解向量x=(1,-1,1,-1)
T
代入方程组,得λ=μ.对方程组的增广矩阵施行初等行变换: [*] (1)当λ≠[*]时,有 [*] 因r(A)=[*]=3<4.故方程组有无穷多解,全部解为 x=(0,[*],0)
T
+k(-2,1,-1,2)
T
,其中k为任意常数. [*] 因r(A)=[*]=2<4,故方程组有无穷多解,全部解为 x=([*],1,0,0)
T
+k
1
(1,-3,1,0)
T
+k
2
(-1,-2,0,2)
T
,其中k
1
,k
2
为任意常数. (2)当λ≠[*]时,由于x
2
=x
3
,即[*],故此时,方程组的解为x=[*](-2,1,-1,2)
T
=(-1,0,0,1)
T
. 当λ=[*]时,由于x
2
=x
3
,即1-3k
1
=2k
2
=k
1
,解得
2
=[*] -2k
1
.故此时全部解为x=([*],1,0,0)
T
+k
1
(1,-3,1,0)
T
+([*]-2k
1
)(-1,-2,0,2)T=(-1,0,0,1)
T
+k
1
(3,1,1,-4)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ecy4777K
0
考研数学二
相关试题推荐
设y=y(χ)为微分方程2χydχ+(χ2-1)dy=0满足初始条件y(0)=1的解,则y(χ)dχ为().
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
设函数f(x)可导且0≤f’(x)≤(k﹥0),对任意的xn,作xn+1=f(xn)(n=0,1,2,...),证明:存在且满足方程f(x)=x.
设f(x)在[1,+∞)内可导,f’(x)<0且=a﹥0,令an=.证明:{an}收敛且0≤.
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围。
求极限.
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设的一个特征值为λ1=2,其对应的特征向量为ξ1=.判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵,若不可对角化,说明理由。
设A为n阶矩阵且r(A)=n-1,证明:存在常数k,使得(A*)2=kA*.
向量组α1,α2,…,αm线性相关的充分条件是
随机试题
画像砖作为一种建筑装饰构件,产生于()。[福建2020]
关于亚甲蓝试验,下列描述错误的是
X线摄影中的光化学反应是
A.国家食品药品监督管理局B.各级卫生主管部门C.省级(食品)药品监督管理局D.药品生产企业、药品经营企业、医疗卫生机构E.国家()主管本行政区域内的药品不良反应监测工作
根据《药物临床试验质量管理规范》,药品注册申请包括()。
心理咨询要对求助者完整接纳,并不意味()。
下列关于边防警察的叙述正确的有()。
某班级去超市采购体育用品时发现买4个篮球和2个排球共需560元,而买2个排球和4个足球则共需500元。问如果篮球、排球和足球各买1个,共需多少元?()
教学模式就是教学方法。
“物质两种存在形式离开了物质,当然都是无,都是只在我们头脑中存在的观念抽象”,这段话说明
最新回复
(
0
)