首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
admin
2020-09-25
109
问题
设A∈P
n×n
.
(1)证明与A可交换的矩阵集合C(A)构成P
n×n
的一个子空间.
(2)当A=
时,求C(A)的维数和一组基.
选项
答案
(1)E
n
∈C(A),所以C(A)非空.设任意B,C∈C(A),则AB=BA,AC=CA,从而可得A(B+C)=AB+AC=BA+CA=(B+C)A,所以B+C∈C(A). 任取k∈R,则A(kB)=k(AB)=k(BA)=(ka)A,所以kB∈C(A).从而可得C(A)对于加法和数乘均封闭,所以C(A)是P
n×n
的一个子空间. (2)任意B∈C(A),则AB=BA,由矩阵运算可知B是对角矩阵;反之,任一对角矩阵B都与A可换,从而可得B∈C(A),所以C(A)是由对角矩阵组成的.所以 [*] 是C(A)的一组基,并且维数为n.
解析
转载请注明原文地址:https://kaotiyun.com/show/jWx4777K
0
考研数学三
相关试题推荐
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
微分方程y'=1+x+y2+xy2的通解为_________。
已知方程组有无穷多解,那么a=_______
设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2x.求出F(x)的表达式.
设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S2为样本均值和样本方差,则
随机试题
兴奋性突触后电位的产生,是由于突触后膜提高了何种离子的通透性()
预防校正弱视最主要的措施是()
使全部实验动物死亡的最低剂量使个别实验动物死亡的剂量
张风因产品质量问题,向法院起诉博瑞食品公司。张风为了赢得诉讼,决定委托诉讼代理人,其间遇到以下问题:下列哪些人员可以作为张风的诉讼代理人?()
下列各项中,属于成本计算方法的有()。
关于宗教和语言,下列说法正确的是()。
公务员法明确规定。公务员要遵守纪律,-恪守职业道德,模范遵守社会公德。请结合报考岗位谈谈你的理解。
已知总体分布为正态,方差未知。从这个总体中随机抽取样本容量为65的样本,样本平均数为60,样本方差为100,那么总体均值μ的99%的置信区间为
EvidencesofHumanHistoryInthestudyofhumanhistory,therearemanypointsthatrequirestudyandresearch;thereison
Whenwethinkofentrepreneurs,mostofusimagine【C1】______,successful,over-achieverslikeBillGatesofMicrosoft,RichardB
最新回复
(
0
)