首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
admin
2020-09-25
148
问题
设A∈P
n×n
.
(1)证明与A可交换的矩阵集合C(A)构成P
n×n
的一个子空间.
(2)当A=
时,求C(A)的维数和一组基.
选项
答案
(1)E
n
∈C(A),所以C(A)非空.设任意B,C∈C(A),则AB=BA,AC=CA,从而可得A(B+C)=AB+AC=BA+CA=(B+C)A,所以B+C∈C(A). 任取k∈R,则A(kB)=k(AB)=k(BA)=(ka)A,所以kB∈C(A).从而可得C(A)对于加法和数乘均封闭,所以C(A)是P
n×n
的一个子空间. (2)任意B∈C(A),则AB=BA,由矩阵运算可知B是对角矩阵;反之,任一对角矩阵B都与A可换,从而可得B∈C(A),所以C(A)是由对角矩阵组成的.所以 [*] 是C(A)的一组基,并且维数为n.
解析
转载请注明原文地址:https://kaotiyun.com/show/jWx4777K
0
考研数学三
相关试题推荐
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
微分方程y"+2y’+5y=0的通解为________。
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
(87年)求矩阵A=的实特征值及对应的特征向量.
[2015年]设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
随机试题
如图所示,A、B为两个相干波源,其振幅都是0.05m,频率都为100Hz,且当A点为波峰时,B点适为波谷。设波速为10m/s,则从A、B两点发出的两列波到P点相遇时,叠加后的合振幅为()。
作为法律事实的行为包括()。
对PDCA的各个阶段的说法正确是()。
安排会场茶歇的正确做法是()。
如图,在一带电量为Q的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为εr,壳外是真空,则在壳外P点处(0P=r)的场强和电位移的大小分别为()。
2014年山东经济增长,不以GDP增加为英雄,要在“四个提高、四个降低”上下功夫,着力提高第()产业比重,降低第()产业比重;着力提高()比重,降低()比重;着力提高绿色产品比重,降低高污染产品比重;着力提高有记录可追溯产品
我国确定国籍的原则是()。
设函数f(u,v)具有2阶连续偏导数,y=f(ex,cosx),求dy/dx|x=0,d2y/dx2|x=0.
A—trafficvolumeB—trafficjamC—trafficaccidentD—trafficregulationsE—trafficcontrol
Culturalrulesdetermineeveryaspectoffoodconsumption.Whoeatstogetherdefinessocialunits.Forexample,insomesocietie
最新回复
(
0
)