首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求(y3-3xy2-3x2y)dx+(3xy2-3x2y3-x3+y2)dy=0的通解.
求(y3-3xy2-3x2y)dx+(3xy2-3x2y3-x3+y2)dy=0的通解.
admin
2016-07-22
29
问题
求(y
3
-3xy
2
-3x
2
y)dx+(3xy
2
-3x
2
y
3
-x
3
+y
2
)dy=0的通解.
选项
答案
可以验知,这是全微分方程.按解全微分方程办法解之. 记P(x,y)=y
3
-3xy
2
-3x
2
y,Q(x,y)=3xy
2
-3x
2
y-x
3
+y
2
,有 [*] 故知这是全微分方程. 方法一 按折线求曲线积分法,取点(x
0
,y
0
)使P(x,y)与Q(x,y)在此点连续即可.例如取(x
0
,y
0
)=(0,0),有 [*] 方法二 原函数法.先将y当作常量, u(x,y)=∫P(x,y)dx+φ(y)=∫(y
3
-3xy
2
-3x
2
y)dx+P(y)=xy
3
-[*]x
2
y
2
-x
3
y+φ(y), 其中φ(y)为对y可微的待定函数.又由[*]=Q(x,y)得 3xy
2
-3x
2
y-x
3
+y
2
=[*]=3xy
2
-3x
2
y-x
3
+φ’(y). 所以 φ’(y)=y
2
, 从而得φ(y)=[*]+C
0
,其中C
0
为任意常数,故得一个原函数(令C
0
=0) [*] 方法三 分项组合视察法.将原给方程通过视察分项组合. (y
3
-3xy
2
-3x
2
y)dx+(3xy
2
-3x
2
y-x
3
+y
2
)dy =(y
3
dx+3xy
2
dy)-3xy(ydx+xdy)-(3x
2
ydx+x
3
dy)+y
2
dy =0, 即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eqw4777K
0
考研数学一
相关试题推荐
设向量组试问:当a,b,c满足什么条件时(1)β可由a1,a2,a3线性表出,且表示法唯一;(2)β可由a1,a2,a3线性表出,但表示法不唯一,并求出一般表达式.(3)β不能由a1,a2,a3线性表出;
设f(x)=,在x=0处连续,则A=__________.
设a>0,b>0都是常数,则2=__________.
求u=x2+y2+z2在约束条件下的最小值和最大值.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=__________.
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a=__________.
证明:当0<x<1时,
判断级数的绝对收敛性和条件收敛性.
将函数f(x)=2+|x|(-1≤x≤1)展开成以2为周期的傅里叶级数,并求
设A为三阶实对称矩阵,为方组AX=0的解,为方程组(2E-A)X=0的一个解,|E+A|=0,则A=________.
随机试题
孙某委托吴某为代理人购买一批货物,吴某的下列行为中违反法律法规的是()。
《春风沉醉的晚上》是郁达夫的散文代表作。()
男性,50岁,慢性支气管疾患10余年,近3个月病情加重,痰中找到硫黄颗粒,右胸壁见瘘管,胸片示右下叶片状阴影,病变累及局部胸膜、胸壁,最可能的诊断是
造影时病人出现重度碘过敏反应,最有效的措施是
A、同一药物,剂型不同,其作用的快慢、强度、持续时间不同B、同一药物,制成同一剂型,由于制备工艺不同而表现不同C、同一药物,制成同一剂型,由于处方组成不同而表现不同D、同一药物,剂型不同,其副作用、毒性不同E、同一药物,
一般情况下,()的建筑工程可以不申请施工许可证。
(操作员:李主管;账套:501账套;操操作日期:2015年1月31日)修改并设置工资项目。工资表名:1月份工资表项目名称:岗位工资类型:数字长度:12小数:2
Alargenumberofcars______parkedinfrontofmyhouse.
可行性分析报告的重点内容是对建设方案的可行性分析和【】估计,最后得出分析结论。
程序设计方法要求在程序设计过程中
最新回复
(
0
)