首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
admin
2020-03-16
65
问题
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ
2
是A
2
的特征值,X为特征向量.若A
2
有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
选项
答案
由AX=λ得A
2
X=A(AX)=A(λX)=λAX=λ
2
X可知λ
2
是A
2
的特征值,X为特征向量.若A
2
X=λX,其中A=[*],A
2
=O,A
2
的特征值为λ=0,取X=[*], 显然A
2
X=0X,但AX=[*],即X不是A的特征向量,因此结论未必成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/fE84777K
0
考研数学二
相关试题推荐
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T0成正比.又设T0=20%,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2x1,x2∈R);(2)若f(0)=1,证明:f(x)≥ef’(0)xx(x∈R).
设D=((x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
[2018年]已知a是常数,A=可经初等列变换化为矩阵B=求满足AP=B的可逆矩阵P.
[2000年]设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=().
[2008年]在下列微分方程中以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是().
设n阶矩阵A正定,X=(χ1,χ2,…,χn)T,证明:二次型f(χ1,χ2,…,χn)=为正定二次型.
设矩阵行列式|A|=一1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值.
设A,B为同阶方阵。举一个二阶方阵的例子说明的逆命题不成立;
随机试题
输气干线两侧要求()m内无深根植物。
下列各组液体混合物能用分液漏斗分开的是()。
国家基本药物的调整周期是
胃、十二指肠溃疡急性穿孔者毒热炽盛期应选用脘痛期胃腑血瘀型选用
可以全面描述正态分布资料特征的两个指标是
新生儿复苏时,哪种情况适宜使用钙剂?()
房地产经纪业务按照经纪服务方式,分为()。
区教育局组织篮球比赛,一共有6支球队参加,若实行单循环制比赛,则一共要参加()轮()场比赛。
(2017·山东)当前,我国学校德育内容主要有()
下面的d是一个字典变量,能够输出数字2的语句是()。d={’food’:{’cake’:1,’egg’:5},’cake’:2,’egg’:3}
最新回复
(
0
)