首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(X,Y)的联合密度函数 (Ⅰ)求常数A;(X,Y)的联合分布函数F(χ,y),并问X与Y是否独立?为什么? (Ⅱ)求条件概率密度fX|Y(χ|y),fY|X(y|χ)及条件概率P{X+Y>1|X<}; (Ⅲ)记Z1=Y-X,
已知(X,Y)的联合密度函数 (Ⅰ)求常数A;(X,Y)的联合分布函数F(χ,y),并问X与Y是否独立?为什么? (Ⅱ)求条件概率密度fX|Y(χ|y),fY|X(y|χ)及条件概率P{X+Y>1|X<}; (Ⅲ)记Z1=Y-X,
admin
2018-06-12
49
问题
已知(X,Y)的联合密度函数
(Ⅰ)求常数A;(X,Y)的联合分布函数F(χ,y),并问X与Y是否独立?为什么?
(Ⅱ)求条件概率密度f
X|Y
(χ|y),f
Y|X
(y|χ)及条件概率P{X+Y>1|X<
};
(Ⅲ)记Z
1
=Y-X,求证Z
1
服从参数λ=1的指数分布,并计算Z
2
=X+Y的概率密度.
选项
答案
(Ⅰ)因为1=∫
-∞
+∞
∫
-∞
+∞
f(χ,y)dχdy=∫
0
+∞
dχ∫
χ
+∞
Ae
-χ
e
-y
dy=A∫
0
+∞
e
-χ
dχ= [*],所以A=2. F(χ,y)=P{X≤χ,Y≤y}=∫
-∞
χ
∫
-∞
y
f(u,v)dudv, 当χ≤0或y≤0时,F(χ,y)=0; 当0<y≤χ时, F(χ,y)=∫
0
y
du∫
u
y
2e
-u
e
-v
dv=2∫
0
y
(e
-2u
e
-y
e
-u
)du =(-e
-2u
+2e
-y
e
-u
)|
0
y
=1-2e
-y
+e
-2y
, 当0<χ<Y时, F(χ,y)=∫
0
χ
du∫
u
y
2e
-u
e
-v
dv=2∫
0
χ
(e
-2u
-e
-y
e
-u
)du =(-e
-2u
+2e
-y
e
-u
)|
0
χ
=1-2e
-y
-e
-2χ
+2e
-(χ+y)
. 综上得, [*] 因为F
X
(χ).F
Y
(y)≠F(χ,y),所以X与Y不独立. [*] (Ⅱ)由于X的概率密度 [*] Y的概率密度 [*] (Ⅲ)①通过求Z
1
=Y-X的分布函数(或概率密度)来证明Z
1
服从参数λ=1的指数分布. Z
1
=Y-X的分布函数F
1
(z)=P{Y-X≤z}=[*]f(χ,y)dχdy, 当z≤0时,F
1
(z)=0;当z>0时, F
1
(z)=∫
0
+∞
dχ∫
χ
χ+z
2e
-χ
e
-y
dy=2∫
0
+∞
e
-χ
(e
-χ
-e
-χ
e
-z
)dχ =(1-e
-z
)2∫
0
+∞
e
-2χ
dχ=1-e
-z
. 综上得[*] 所以Z
1
=Y-X服从参数λ=1的指数分布. [*] ②若(X,Y)~f(χ,y),则Z
2
=X+Y,的概率密度 f
2
(z)=∫
-∞
+∞
f(χ,z-χ)dχ=∫
-∞
+∞
f(z-y,y)dy, 其中f(z-y,y)=[*], 即0<y<z<2),, 所以当z≤0时f
2
(z)=0;当z>0时 f
2
(z)=[*]2e
-z
dy=ze
-z
. 综上得f
2
(z)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fFg4777K
0
考研数学一
相关试题推荐
设(X,Y)为二维连续型随机变量,则下列公式各项都有意义的条件下①f(x,y)=fX(x)fY(y);②fX(x)=∫-∞+∞fY(y)fX|Y(x|y)dx;④P{X<Y)=∫-∞+∞FX(y)fY(y)dy,其中FX(y)=∫-∞yfX(x)d
设n元齐次线性方程组Aχ=0的系数矩阵A的秩为r,则Aχ=0有非零解的充分必要条件是()
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
设随机变量Xi~N(0,1),i=1,2且相互独立,令Y1=,Y2=X12+X22,试分别计算随机变量Y1与Y2的概率密度.
(Ⅰ)已知由参数方程确定了可导函数y=f(χ),求证:χ=0是y=f(χ)的极大值点.(Ⅱ)设F(χ,y)在(χ0,y0)某邻域有连续的二阶偏导数,且F(χ0,y0)=F′χ(χ0,y0)=0,F′y(χ0,y0)>0,F〞χχ(χ0,y0)<0
假设每次试验只有成功与失败两种结果,并且每次试验的成功率都是P(0<P<1).现进行重复独立试验直至成功与失败的结果都出现为止,已知试验次数X的数学期望EX=3,则P=_______.
设离散型二维随机变量(X,Y)的取值为(χi,yj)(i,j=1,2),且P{X=χ2}=,P{Y=y1|X=χ2}=,P{X=χ1|Y=y1}=,试求:(Ⅰ)二维随机变量(χ,Y)的联合概率分布;(Ⅱ)X与Y的相关系数ρXY;
已知随机变量X1~,X2~,且X1与X2独立.记A={X1=1},B={X2=1},C1={X1X2=1},C2={X1X2=-1},则
设随机变量X和Y相互独立,且都服从正态分布N(0,σ2).已知X1,X2,…,Xm与Y1,Y2,…,Yn(n>4)是分别来自X和Y的简单随机样本,统计量Y=服从自由度为n的t分布,则时,k=_______.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
随机试题
在世界范围内,实行两党制的国家有()
细菌基因的转移和重组方式不包括
关于急性胰腺炎的腹痛特点叙述正确的是()
处方中h.S是指处方中p.o是指
在抵押权人同意,抵押人转让抵押物时,转让所得的价款,应当向抵押权人提前清偿所担保的债权或者向与抵押权人约定的第三人提存。()
按《公路工程竣(交)工验收办法》的规定,公路工程(合同段)进行交工验收应具备的条件包括()
下列脚手架工程中,其专项施工方案需要进行专家论证的是()。
下列企业融资方式中,属于间接融资的有()。Ⅰ.发行股票Ⅱ.银行贷款Ⅲ.发行债券Ⅳ.从国际金融机构借款
居民身份证及其他人口证件的签发和验证工作属于抬安行政管理工作中的一项内容。( )
阅读材料回答问题:材料1社会主义的本质,是解放生产力,发展生产力,消灭剥削,消除两极分化,最终达到共同富裕。就是要对大家讲这个道理。走社会主义道路,就是要逐步实现共同富裕。共同富裕的构想是这样提出的:一部分地区有条件先发展起来,一部分地区发展慢点,先
最新回复
(
0
)