首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2018-02-07
35
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=一2α
1
, 即α
1
是矩阵B的属于特征值一2的特征向量。 由关系式B=A
5
一4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2得B的三个特征值为μ
1
=一2,μ
2
=l,μ
3
=1。 设α
1
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为:[*]。 B的全部特征向量为:[*],其中k
1
≠0,k
2
,k
3
不同时为零。
解析
转载请注明原文地址:https://kaotiyun.com/show/fHk4777K
0
考研数学二
相关试题推荐
设A,B为同阶可逆矩阵,则().
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设(X,Y)~N(μ1,μ2;δ12,δ22;ρ),利用条件期望E[X|Y]=μ1+(δ1/δ2)ρ(Y-μ2),证明ρX,Y=ρ.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
不等式的解集(用区间表示)为[].
设,则I,J,K的大小关系为
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记。(1)证明二次型f对应的矩阵为2ααT+ββT;(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
随机试题
口底、颌下和颈部的急性蜂窝织炎,患者最危险的情况是发生
浮髌试验阳性提示
收益法适用的条件,是房地产的收益和()都易于量化。
按定额反应的生产要素消耗内容可把工程定额分为()。
下列各种证券中,属于变动收益证券的是( )。
下列不属于幼儿园教师主要职责的是()。
在定量分析的方法中,描述数据集中趋势的量数是()。
6,8,8,0,-32,()
FTA
WaltDisneystartedhisanimationcareerinKansasCity,Missouri,producingfilmsthatwereacombinationofcartoonandlivea
最新回复
(
0
)