首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2018-02-07
85
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=一2α
1
, 即α
1
是矩阵B的属于特征值一2的特征向量。 由关系式B=A
5
一4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2得B的三个特征值为μ
1
=一2,μ
2
=l,μ
3
=1。 设α
1
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为:[*]。 B的全部特征向量为:[*],其中k
1
≠0,k
2
,k
3
不同时为零。
解析
转载请注明原文地址:https://kaotiyun.com/show/fHk4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设在点x=1处可导,求a,b的值.
证明下列各题:
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
(2009年试题,23)设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(I)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
分部收入通常包括【】
清算报告要经______验证后,报企业主管机关和原登记注册机关,办理停业登记。()
设函数f(x)在(-∞,+∞)上可导,且f(x)=e-2+3,则fˊ(x)等于【】
A.异丙托溴铵B.氨茶碱C.西咪替丁D.硝酸甘油E.沙丁胺醇属于M受体抑制剂的是
下列选项中,不能引起特异性感染的是
佝偻病患儿早期的临床表现主要是
某施工企业承担了某项施工任务,为保证项目目标的实现,项目经理做了以下各项工作,其中属于项目目标事前控制的内容有()。
2016年12月1日,甲公司因财务困难与乙公司签订债务重组协议。双方约定,甲公司以其拥有的一项无形资产抵偿所欠乙公司163.8万元货款,该项无形资产的公允价值为90万元,取得成本为120万元,已累计摊销10万元,相关手续已于当日办妥。不考虑增值税等相关税费
简述教学反思的类型。
TheTreasurycouldpocket20millionayearinextrafinesoncethecountry’sspeedcameranetworkisexpanded.Motoringorgani
最新回复
(
0
)