首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(90年)设λ1,λ2是n阶方阵A的两个不同特征值,χ1,χ2分别是属于λ1,λ2的特征向量.证明:χ1+χ2不是A的特征向量.
(90年)设λ1,λ2是n阶方阵A的两个不同特征值,χ1,χ2分别是属于λ1,λ2的特征向量.证明:χ1+χ2不是A的特征向量.
admin
2017-05-26
116
问题
(90年)设λ
1
,λ
2
是n阶方阵A的两个不同特征值,χ
1
,χ
2
分别是属于λ
1
,λ
2
的特征向量.证明:χ
1
+χ
2
不是A的特征向量.
选项
答案
用反证法.设χ
1
+χ
2
为方阵A的属于特征值λ
0
.的特征向量,则有 A(χ
1
+χ
2
)=λ
0
(χ
1
+χ
2
) 或Aχ
1
+Aχ
2
=λ
0
χ
1
+λ
0
χ
2
由已知,有Aχ
i
=λ
i
χ
2
(i=1,2),于是有 λ
1
χ
1
+λ
2
χ
i
=λ
0
χ
1
+λ
0
χ
χ
即(λ
1
-λ
0
)χ
1
+(λ
2
-λ
0
)χ
2
=0 因为χ
1
、χ
2
分别是属于不同特征值的特征向量,故χ
1
与χ
2
线性无关,因此由上式得 λ
1
-λ
0
=0,λ
2
-λ
0
=0 于是得λ
1
=λ
0
=λ
2
,这与λ
1
≠λ
2
矛盾.所以χ
1
+χ
2
不是A的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/fRH4777K
0
考研数学三
相关试题推荐
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)X=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
利用定积分计算下列极限:
设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ε,使f(ε)=f(ε+a).
设n阶可逆矩阵A满足2|A|=|kA|,k>0,则|=_____.
若B是4阶矩阵,RB=2,则r(AB一2B)=_____.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E—A)x=0的基础解系为η1,η2,则A的属于λ0的全部特征向世为().
设a1,a2,a3,a4是四维非零列向量组,A=(a1,a2,a3,a4),A*为A的伴随矩阵,已知方程组AX=0的通解为X=k(0,1,I,0)T,则方程组A*X=0的基础解系为().
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAX=0必有().
随机试题
外敷有发泡作用,皮肤过敏者忌用的药物是
盐酸氯丙嗪“有关物质”项主要是检查
下述哪项不是放置节育环的禁忌证
下列不属于麦克里兰的三重需要理论中的需要的是()。
根据合伙企业法律制度的规定,下列行为中,禁止由有限合伙人实施的是()。(2015年)
人们看到鸟儿的飞翔发明了飞机,看到鱼儿游水发明了潜水艇,这类创造活动的心理影响机制是()
反腐:倡廉
设n为非负整数,则|n一1|+|n—2|+…+|n一100|的最小值是[].
Weshouldalwaysbearinmindthat______decisionsoftenresultinseriousconsequences.
Itis(advise)______foryoutokeepawayfromsaltyfoodbecauseofyourhighbloodpressure.
最新回复
(
0
)