首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(90年)设λ1,λ2是n阶方阵A的两个不同特征值,χ1,χ2分别是属于λ1,λ2的特征向量.证明:χ1+χ2不是A的特征向量.
(90年)设λ1,λ2是n阶方阵A的两个不同特征值,χ1,χ2分别是属于λ1,λ2的特征向量.证明:χ1+χ2不是A的特征向量.
admin
2017-05-26
74
问题
(90年)设λ
1
,λ
2
是n阶方阵A的两个不同特征值,χ
1
,χ
2
分别是属于λ
1
,λ
2
的特征向量.证明:χ
1
+χ
2
不是A的特征向量.
选项
答案
用反证法.设χ
1
+χ
2
为方阵A的属于特征值λ
0
.的特征向量,则有 A(χ
1
+χ
2
)=λ
0
(χ
1
+χ
2
) 或Aχ
1
+Aχ
2
=λ
0
χ
1
+λ
0
χ
2
由已知,有Aχ
i
=λ
i
χ
2
(i=1,2),于是有 λ
1
χ
1
+λ
2
χ
i
=λ
0
χ
1
+λ
0
χ
χ
即(λ
1
-λ
0
)χ
1
+(λ
2
-λ
0
)χ
2
=0 因为χ
1
、χ
2
分别是属于不同特征值的特征向量,故χ
1
与χ
2
线性无关,因此由上式得 λ
1
-λ
0
=0,λ
2
-λ
0
=0 于是得λ
1
=λ
0
=λ
2
,这与λ
1
≠λ
2
矛盾.所以χ
1
+χ
2
不是A的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/fRH4777K
0
考研数学三
相关试题推荐
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)X=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设矩阵A满足A2+A-4层=0,其中E为单位矩阵,则(A-E)-1=________.
已知方阵A满足A2一A一2E=0,则A-1=_____,(A+2E)-1=_____.
设n阶可逆矩阵A满足2|A|=|kA|,k>0,则|=_____.
A、B为n阶矩阵,且(A一B)2=E。则(层一AB-1)-1().
n阶矩阵A和B有相同的特征值,且都有n个线性无关的特征向量,则不成立的是().
设α、β都是非零的四维列向量,且α与β正交,A=αβT,则矩阵A的线性无关的特征向量共有().
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E—A)x=0的基础解系为η1,η2,则A的属于λ0的全部特征向世为().
随机试题
休克难治期为不可逆期是因为
对机关的公文实行集中统一管理的机构是()
关于HELLP综合征下列叙述正确的是
我国环境保护法律法规体系包括()。
行政法规是由国务院制定并发布或经国务院批准发布的,其地位仅次于宪法和法律。()
根据《2000通则》,一笔DDP贸易术语成交的合同,以下哪个选项不是卖方应承担的义务()。
雕塑有不同的表现形态,《思想者》是一件()作品。
中国3G(第三代移动通信)热启前夜,专家提出,在中国大规模建设3G网时,不管发几张牌照,有多少运营商,都应采用统一的3G标准,引导运营商建设全国统一技术体制的移动网,“中国必须统一建设TD—SCDMA(简称TD)网”。《北京晨报》形容这一观点“令全球电信界
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
【T1】AgainstthebackdropoftherelativedeclineofBritain,whoseGDPhasslippedtotheseventhplaceintheworld,Londonis
最新回复
(
0
)