首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(90年)设λ1,λ2是n阶方阵A的两个不同特征值,χ1,χ2分别是属于λ1,λ2的特征向量.证明:χ1+χ2不是A的特征向量.
(90年)设λ1,λ2是n阶方阵A的两个不同特征值,χ1,χ2分别是属于λ1,λ2的特征向量.证明:χ1+χ2不是A的特征向量.
admin
2017-05-26
121
问题
(90年)设λ
1
,λ
2
是n阶方阵A的两个不同特征值,χ
1
,χ
2
分别是属于λ
1
,λ
2
的特征向量.证明:χ
1
+χ
2
不是A的特征向量.
选项
答案
用反证法.设χ
1
+χ
2
为方阵A的属于特征值λ
0
.的特征向量,则有 A(χ
1
+χ
2
)=λ
0
(χ
1
+χ
2
) 或Aχ
1
+Aχ
2
=λ
0
χ
1
+λ
0
χ
2
由已知,有Aχ
i
=λ
i
χ
2
(i=1,2),于是有 λ
1
χ
1
+λ
2
χ
i
=λ
0
χ
1
+λ
0
χ
χ
即(λ
1
-λ
0
)χ
1
+(λ
2
-λ
0
)χ
2
=0 因为χ
1
、χ
2
分别是属于不同特征值的特征向量,故χ
1
与χ
2
线性无关,因此由上式得 λ
1
-λ
0
=0,λ
2
-λ
0
=0 于是得λ
1
=λ
0
=λ
2
,这与λ
1
≠λ
2
矛盾.所以χ
1
+χ
2
不是A的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/fRH4777K
0
考研数学三
相关试题推荐
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)X=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
利用定积分计算下列极限:
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
已知是B的伴随矩阵,则|B|=_____.
设α、β都是非零的四维列向量,且α与β正交,A=αβT,则矩阵A的线性无关的特征向量共有().
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E—A)x=0的基础解系为η1,η2,则A的属于λ0的全部特征向世为().
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAX=0必有().
随机试题
A、Whetherthepracticeshouldbeallowedtocontinueinfuture.B、Whetherthereshouldbeaminimumagelimitforexecution.C、W
A.碘酊B.过氧乙酸C.戊二醛D.漂白粉E.乙醇胃镜的消毒可采用
治疗温热病邪入血分,发斑,神昏,壮热。宜选用
某公司某项目(以下简称工程),总投资为768万元,其中设备投资为370万元,土建及其他投资为398万元。公司于2001年9月27日办理了该工程的《村镇规划选址意见书》,2002年2月8日开始办理土地审批手续。2001年11月,公司将工程发包给自称是挂靠某建
2015年1月1日,某地方政府拟采购A物资。在实施招标采购过程中,甲公司向该地方政府提供的生产资质为去年非法取得。在采购执行过程中,由于其他原因,该地方政府对该采购事项予以废标。要求:根据上述资料,回答下列问题。该地方政府的预算应由()批准。
下列选项中,关于商业银行从事理财产品销售活动的说法,正确的是()。
某小学六(3)班是全校有名的乱班,上课纪律混乱,打架成风。班上有一名“在野学生领袖”,喜好《水浒》人物,爱打抱不平,常常“为朋友两肋插刀”。打架时,只要他一挥手,其他人就蜂拥而上。班上正气不能抬头,班干部显得软弱无力,一全班同学的学习成绩逐步下降。如何
foodsecurity
Areyoufacingasituationthatlooksimpossibletofix? In1969,thepollutionwasterriblealongtheCuyahogaRivernearC
EuropeanimmigrantstoColonialAmericabroughtwiththemtheirculture,traditionsandphilosophyabouteducation.Manyof【S1】_
最新回复
(
0
)