首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[20l0年] 设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
[20l0年] 设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
admin
2019-04-05
98
问题
[20l0年] 设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ
2
+η
2
.
选项
答案
将待证等式改写为f′(ξ)一ξ
2
=η
2
一f′(η),从而想到构造辅助函数F(x)=f(x)一x
3
/3,分别在区间[0,1/2],[1/2,1]上使用拉格朗日中值定理. 证 令F(x)=f(x)一x
3
/3,则F(0)=F(1)=0.对F(x)在[0,l/2]上使用拉格朗日中值定理得到:存在ξ∈(0,1/2),使 [*]=F′(ξ)=f′(ξ)一ξ
2
. ① 又在[1/2,1]上对F(x)用拉格朗日中值定理得到:存在η∈(1/2,1),使 [*]=F′(η)一f′(η)一η
2
, ② 由式①+式②得到[*]=f(ξ)一ξ
2
+f′(η)一η
2
,即 [*]=0=f′(ξ)一ξ
2
+f′(η)一η
2
, 故 f′(ξ)+f′(η)=ξ
2
+η
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/fXV4777K
0
考研数学二
相关试题推荐
已知a,b,c不全为零,证明方程组只有零解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
证明3阶矩阵
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
判断下列函数的单调性:
证明:χ-χ2<ln(1+χ)<χ(χ>0).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
随机试题
________whenthestorewillopenagain,Iwouldtellyou.
柠檬中含有丰富的维生素C,可加工成多种饮料。()
下列关于环境质量标准和污染物排放标准的说法,正确的是()。
为提高我国打火机、点火枪类商品的质量,促进贸易发展,保障运输及消费者人身安全,自2001年6月1日起,对出口打火机、点火枪类商品实行( )。
我国出口一批小麦,运至日本大阪。可采用以下报价形式:
关于期货交易和远期交易,下列叙述正确的有()。
刘畅今年15岁,在老家和同学吵架时,掏出随身携带的匕首将同学捅成重伤。事后,刘畅怕被抓获,就来到北京的阿姨家“避风”。姨父看其神色不对,就问他发生了什么事。经过教育,刘畅告诉了姨父捅伤同学的事情,并答应第二天早上和姨父一起去自首。晚上,姨父怕刘畅第二天反悔
一个汉字的内码与它的国标码之间的差是________。
Ineverydayusage,"hot"means______.Whichofthefollowingistrue?
NewresearchconductedbybrainresearcherAviKarnioftheUniversityofHaifainIsraelexploresthepossibilitythatnapshel
最新回复
(
0
)