首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组 有3个线性无关的解. 证明方程组系数矩阵A的秩r(A)=2;
admin
2021-02-25
86
问题
已知非齐次线性方程组
有3个线性无关的解.
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设ξ
1
,ξ
2
,ξ
3
是该方程组的3个线性无关的解,则ξ
1
-ξ
2
,ξ
1
-ξ
3
是对应齐次线性方程组Ax=0的两个线性无关的解,因而4-r(A)≥2,即r(A)≤2.又A有一个二阶子式[*],于是r(A)≥2,因此r(A)=2.
解析
本题考查含参数非齐次线性方程组的求解问题.要求考生掌握向量组线性相关性的定义和证明;齐次线性方程组基础解系的概念;未知数的个数(n)-系数矩阵的秩r(A)=基础解系解向量的个数.
转载请注明原文地址:https://kaotiyun.com/show/fa84777K
0
考研数学二
相关试题推荐
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设f(χ)为连续正值函数,χ∈[0,+∞),若平面区域Rt={(χ,y)}0≤χ≤t,0≤y<f(χ)}(t>0)的形心纵坐标等于曲线y=f(χ)在[0,t]上对应的曲边梯形面积与之和,求f(χ).
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
随机试题
肌肉的初长度取决于
眶下神经阻滞麻醉的麻醉区域不包括
治疗湿热壅阻型慢性盆腔炎的治法是
Interne上的每台计算机在通信之前必须指定一个()。
背书人甲将一张100万元的汇票分别背书转让给乙和丙各50万元。这种做法的后果是()。
关于外部培训与开发优点的说法,正确的有()。
下列各项中,不属于企业所得税征税范围的是()。
Whereisthewomanfrom?
Youwillhearanotherfiverecordings.Fivepeoplearetalkingaboutprojectmanagement.Foreachrecording,decidewhataction
Valentine’sDayissupposedtobeaboutloveandromance.Butunfortunately,itcanbejusttheopposite.Becauseofthat,Feb.
最新回复
(
0
)