首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组 有3个线性无关的解. 证明方程组系数矩阵A的秩r(A)=2;
admin
2021-02-25
72
问题
已知非齐次线性方程组
有3个线性无关的解.
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设ξ
1
,ξ
2
,ξ
3
是该方程组的3个线性无关的解,则ξ
1
-ξ
2
,ξ
1
-ξ
3
是对应齐次线性方程组Ax=0的两个线性无关的解,因而4-r(A)≥2,即r(A)≤2.又A有一个二阶子式[*],于是r(A)≥2,因此r(A)=2.
解析
本题考查含参数非齐次线性方程组的求解问题.要求考生掌握向量组线性相关性的定义和证明;齐次线性方程组基础解系的概念;未知数的个数(n)-系数矩阵的秩r(A)=基础解系解向量的个数.
转载请注明原文地址:https://kaotiyun.com/show/fa84777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
a,b取何值时,方程组有解?
设f(x)为连续函数,试证明:F(x)的奇偶性正好与f(x)的奇偶性相反;
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
设y1(x),y2(x)是微分方程yˊˊ+pyˊ+qy=0的解,则由y1(x),y2(x)能构成方程通解的充分条件是().
随机试题
进入药店,刚开始可以闻到很浓的药味,过一会儿就闻不到了,这是感觉的()
《郑伯克段于鄢》记叙了春秋末期发生在郑国王室内部的一场斗争。()
某患儿精神呆滞,智力迟钝,面色苍白,四肢关节柔软,手不能握举,足不能行步。治疗方法为
保护易感人群最重要的主动免疫措施是
孔祥瑞是天津港煤码头公司操作一队队长,只有初中文凭的他在港口工作的30多年里,通过勤奋学习,不断钻研,把精力倾注在技术改革和创新上,在工作岗位上取得科研成果150余项,为企业创造经济效益8400万元,是新时期产业工人的先进典型,孔祥瑞的成功信条是:“可以没
领导脾气不好,老是批评你,你怎么办?
泥土:煅烧:陶瓷
Justasthebuilderisskilledinthehandlingofhisbricks,______istheexperiencedwriterinthehandlingofhiswords.
Welisteneddumb-struck,fullof______,totheshockingdetailsofthecorruptionoftheexpresidentofthecompany.
A、Australia.B、Maharashtra.C、France.D、Austria.A
最新回复
(
0
)