首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
admin
2019-07-28
108
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=β的通解为(1,2,2,1)
T
+c(1,一2,4,0)
T
,c任意.记B=(α
3
,α
2
,α
1
,β一α
4
).求方程组Bx=α
1
一α
2
的通解
选项
答案
首先从Ax=β的通解为(1,2,2,1)
T
+c(1,一2,4,0)
T
可得到下列信息: ① Ax=0的基础解系包含1个解,即4一r(A)=1,得r(A)=3.即r(α
1
,α
2
,α
3
,α
4
)=3. ② (1,2,2,1)
T
是Ax=β解,即α
1
+2α
2
+2α
3
+α
4
=β. ③ (1,一2,4,0)
T
是Ax=0解,即α
1
一2α
2
+4α
3
=0.α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2. 显然B(0,一1,1,0)
T
=α
1
一α
2
,即(0,一1,1,0)
T
是Bx=α
1
一α
2
的一个解. 由②,B=(α
3
,α
2
,α
1
,β一α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是 r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2. 则Bx=0的基础解系包含解的个数为4一r(B)=2个.α
1
一2α
2
+4α
3
=0说明(4,一2,1,0)
T
是Bx=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)容易得到B(一2,一2,一1,1)
T
=0,说明(一2,一2,一1,1)
T
也是Bx=0的解.于是(4,一2,1,0)
T
和(一2,一2,一1,1)
T
构成 Bc=0的基础解系. Bx=α
1
一α
2
的通解为: (0,一1,1,0)
T
+c
1
(4,一2,1,0)
T
+c
2
(一2,一2,一1,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/pXN4777K
0
考研数学二
相关试题推荐
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明:(1)存在η∈,使得f(η)=η;(2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
求
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
设f(x)为二阶可导的偶函数,f(0)=1,f’’(0)=2且f’’(x)在x=0的邻域内连续,则=_______.
设f(x)二阶可导,且f’’(x)>0.证明:当x≠0时,f(x)>x.
由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π)(摆线)及x轴围成平面图形的面积S=_________.
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
设则当x→0时,f(x)与g(x)相比是()
随机试题
“选他当主席”这个短语是()。
Abeamoflightwillnotbendroundthecornersunless______todosowiththehelpofareflectingdevice.
A.口服补液盐B.2:1等张含钠液C.4:3:2液静滴D.5%碳酸氢钠静推E.2:3:1液静滴对于下列腹泻患儿,首选治疗为1岁小儿腹泻黄色稀水便3天,每日十余次,伴呕吐,大便镜检:偶见脓细胞。查体:精神萎靡,皮肤弹性极差,哭无泪,四肢发凉,脉
肺炎球菌感染引起的大叶性肺炎属于
机场仅一条跑道,其磁方向角度为134。~314。。常年主导风向为西北风,则该跑道主降端标志号码为()。
划分全面调查与非全面调查的标志是()。
从本质上看,货币()。
英美法系
简述数据库的基本结构。
NaturalMedicinesSinceearliestdays,humanshaveusedsomekindsofmedicines.Weknowthisbecausehumanshavesurvived.
最新回复
(
0
)