首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
admin
2019-07-28
105
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=β的通解为(1,2,2,1)
T
+c(1,一2,4,0)
T
,c任意.记B=(α
3
,α
2
,α
1
,β一α
4
).求方程组Bx=α
1
一α
2
的通解
选项
答案
首先从Ax=β的通解为(1,2,2,1)
T
+c(1,一2,4,0)
T
可得到下列信息: ① Ax=0的基础解系包含1个解,即4一r(A)=1,得r(A)=3.即r(α
1
,α
2
,α
3
,α
4
)=3. ② (1,2,2,1)
T
是Ax=β解,即α
1
+2α
2
+2α
3
+α
4
=β. ③ (1,一2,4,0)
T
是Ax=0解,即α
1
一2α
2
+4α
3
=0.α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2. 显然B(0,一1,1,0)
T
=α
1
一α
2
,即(0,一1,1,0)
T
是Bx=α
1
一α
2
的一个解. 由②,B=(α
3
,α
2
,α
1
,β一α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是 r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2. 则Bx=0的基础解系包含解的个数为4一r(B)=2个.α
1
一2α
2
+4α
3
=0说明(4,一2,1,0)
T
是Bx=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)容易得到B(一2,一2,一1,1)
T
=0,说明(一2,一2,一1,1)
T
也是Bx=0的解.于是(4,一2,1,0)
T
和(一2,一2,一1,1)
T
构成 Bc=0的基础解系. Bx=α
1
一α
2
的通解为: (0,一1,1,0)
T
+c
1
(4,一2,1,0)
T
+c
2
(一2,一2,一1,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/pXN4777K
0
考研数学二
相关试题推荐
设,其中f(s,t)二阶连续可偏导,求du及
求=________.
设f(x)为二阶可导的偶函数,f(0)=1,f’’(0)=2且f’’(x)在x=0的邻域内连续,则=_______.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则
由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π)(摆线)及x轴围成平面图形的面积S=_________.
假定所涉及的反常积分(广义积分)收敛,证明:∫-∞+∞=∫-∞+∞f(x)dx.(*)
(00年)设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时有
设数列则当n→∞时,xn是
随机试题
分别指出下列常用宏操作的功能:OpenTable、OpenForm、OpenQuery、OpenReport、OpenDataAccessPage
A.水脏B.娇脏C.刚脏D.孤府
A.氢氯噻嗪B.心得安C.呋塞米D.卡托普利E.哌唑嗪高血压病并双侧肾动脉狭窄患者禁用的药物是
丹痧邪侵肺卫治则是水痘毒热重症治则是
Na+泵的特点是
下列不属于气机失调表现的是()。
过梁上与过梁成600角的三角形范围及过梁净跨度()的高度范围内,不得在其上设置脚手眼。
2008年12月31日借款利息资本化的金额为( )万元。2008年全年实际利息费用为( )万元。
作品独创性的判断不在于文字的多寡。而在于通过文字所_________出来的精妙构思和遣词造句的功底,如微型小说、微型散文、微型童话或微型诗歌等,以微博为载体表现出来_________的作品。填入划横线部分最恰当的一项是:
McDonald’s,Greggs,KFCandSubwayaretodaynamedasthemostlitteredbrandsinEnglandasKeepBritainTidycalledonfast-fo
最新回复
(
0
)