首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(数学一)已知二次型f(x,y,z)=3x2+2y2+2z2+2xy+2zx.(1)用正交变换把二次型f化为标准形,并写出相应的正交矩阵;(2)求函数f(x,y,z)在单位球面x2+y2+z2=1上的最大值和最小值.
(数学一)已知二次型f(x,y,z)=3x2+2y2+2z2+2xy+2zx.(1)用正交变换把二次型f化为标准形,并写出相应的正交矩阵;(2)求函数f(x,y,z)在单位球面x2+y2+z2=1上的最大值和最小值.
admin
2020-06-05
63
问题
(数学一)已知二次型f(x,y,z)=3x
2
+2y
2
+2z
2
+2xy+2zx.(1)用正交变换把二次型f化为标准形,并写出相应的正交矩阵;(2)求函数f(x,y,z)在单位球面x
2
+y
2
+z
2
=1上的最大值和最小值.
选项
答案
(1)二次型f所对应矩阵的特征多项式为 |A-AE|[*] 所以A的特征值为λ
1
=1,λ
2
=2,λ
3
=4. 当λ
1
=1时,解方程组(A-E)x=0.由 A-E=[*] 解得基础解系为p
1
=(﹣1,1,1)
T
,将其单位化得q
1
=[*] 当λ
2
=2时,解方程组(A-2E)x=0.由 A-2E=[*] 得基础解系为p
1
=(0,﹣1,1)T,将其单位化得q
2
=[*] 当λ
3
=4时,解方程组(A-4E)x=0.由 A-4E[*] 得基础解系为p
3
=(2,1,1)
T
,将其单位化得q
3
=[*].于是正交变换为 [*]或X’=PX 且把二次型f(x,y,z)化为x’
2
+2y’
2
+4z’
2
,其中X’=(x’,y’,z’),X=(z,y,z). (2)注意到 z
2
+y
2
+z
2
=X
T
X=X
T
PP
T
X=(P
T
X)
T
(P
T
X)=X’
T
X=x’
2
+y’
2
+z’
2
f(x,y,z)=zTAx=xTP[*]PTx=(P
T
x)
T
[*](P
T
x)=(x’)
T
[*](x’)=x’
2
+2y’
2
+4z’
2
这说明方程x
2
+y
2
+z
2
=1在正交变换下X’=PX化为方程x’
2
+y’
2
+z’
2
=1.函数f(x,y,z) 在单位球面x
2
+y
2
+z
2
=1上的最大值和最小值,也就是函数x’
2
+2y’
2
+4z’
2
在x’
2
+y’
2
+z’
2
=1上的最大值和最小值. 从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ffv4777K
0
考研数学一
相关试题推荐
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
设φ(x)在[a,b]上连续,且φ(x)>0,则函数y=(x)=()
设(X,Y)为二维随机变量,则下列结论正确的是()
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则
由曲线y=(0≤x≤π)与x轴围成的平面图形绕x轴旋转而成的旋转体体积为()
设随机变量X1,X2,…,Xn相互独立同分布,其密度函数为偶函数,且D(Xi)=1,i=1,2,…,n,则对任意ε>0,根据切比雪夫不等式直接可得()
曲线渐近线的条数为()
f(rcosθ,rsinθ)rdr(a>0),则积分域为()
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σiA(i=1,2,…,n),用这些仪器独立地对某一物理量θ各观察一次,分别得到X1A,X2A,…,XnA,设E(Xi)=θ(i=1,2,…,n),问k1,k2,…,knA应取何值,才能在使用最小?
随机试题
根据我国《选举法》的规定,有关“由选民直接选举的人大代表候选人提名推荐方式”中,不正确的是()。
油田经济评价步骤包括核定基础数据和计算参数等内容。()
企业基期的销售收入利润率为30%,计划期的销售收入利润率与基期的相同,预计企业的销售收入为7000万元,则企业计划期内的利润额为()
A.C1~3B.C4C.C5D.C6E.C7支配头运动肌的是
填隙碎石适用于()。
对下肢骨牵引患者的护理,错误的是()。
课外活动最基本的组织形式是()
下列选项中,符合所给图形的变化规律的是()。
根据以下资料,回答问题。2000年、2005年、2006年发达国家、发展中国家和世界总体的国际储备(不包括黄金)和黄金储备变化情况,如图所示:部分国家国际储备和黄金储备的变化情况如下表所示:假设黄金价格为500美元/盎司,那么表中各年黄
(259)的软件是系统软件。
最新回复
(
0
)