首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求出一个齐次线性方程组,使它的基础解系是η1=(2,-1,1,1)T,η2=(-1,2,4,7)T.
求出一个齐次线性方程组,使它的基础解系是η1=(2,-1,1,1)T,η2=(-1,2,4,7)T.
admin
2016-10-20
88
问题
求出一个齐次线性方程组,使它的基础解系是η
1
=(2,-1,1,1)
T
,η
2
=(-1,2,4,7)
T
.
选项
答案
由η
1
,η
2
是Ax=0的基础解系,知n-r(A)=2,即r(A)=2.对于齐次方程组[*]=0,有 [*] 得基础解系(-2,-3,1,0)
T
,(-3,-5,0,1)
T
. 所以[*]为所求.
解析
由A(η
1
,η
2
)=0有(η
1
,η
2
)
T
A
T
=0,可见
的解就是A
T
的列向量(即A的行向量).
转载请注明原文地址:https://kaotiyun.com/show/fgT4777K
0
考研数学三
相关试题推荐
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
已知线性方程组(I)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
随机试题
《关于全面深化新时代教师队伍建设改革的意见》指出,到2035年培养造就数以百万计的骨干教师,数以十万计的卓越教师和数以万计的()
纳税人、扣缴义务人未按规定的期限办理纳税申报和报送纳税资料,由税务机关责令限期改正,并处以()以下的罚款。
()是学生心理健康教育的主要场所。
只有具备强烈的学习动机,才能积极主动地开展体育学习和活动,并取得良好的学习效果;但良好的学习效果却无法激发体育学习和活动的动机。()
下列命题中,属于客观唯心主义的是()。
下列选项中不属于导航卫星(系统)的是()。
假定Picture1和Text1分别为图片框和文本框的名称,则下列语句中错误的是()。
用二维表结构表示实体与实体之间的联系的模型是()。
InterviewTheimportanceandfocusoftheinterviewintheworkoftheprintandbroadcastjournalistarereflectedinsever
Forthousandsofyearsmenhavebeenwanderingaround—forpleasure,forprofit,ortosatisfytheircuriosity.Whentheonlymea
最新回复
(
0
)