首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求出一个齐次线性方程组,使它的基础解系是η1=(2,-1,1,1)T,η2=(-1,2,4,7)T.
求出一个齐次线性方程组,使它的基础解系是η1=(2,-1,1,1)T,η2=(-1,2,4,7)T.
admin
2016-10-20
103
问题
求出一个齐次线性方程组,使它的基础解系是η
1
=(2,-1,1,1)
T
,η
2
=(-1,2,4,7)
T
.
选项
答案
由η
1
,η
2
是Ax=0的基础解系,知n-r(A)=2,即r(A)=2.对于齐次方程组[*]=0,有 [*] 得基础解系(-2,-3,1,0)
T
,(-3,-5,0,1)
T
. 所以[*]为所求.
解析
由A(η
1
,η
2
)=0有(η
1
,η
2
)
T
A
T
=0,可见
的解就是A
T
的列向量(即A的行向量).
转载请注明原文地址:https://kaotiyun.com/show/fgT4777K
0
考研数学三
相关试题推荐
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
有外形相同的球分装3个盒子,每盒10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一球,若取得标有字母A的球,则在第二个盒子中任取一球;
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均实对称矩阵时,试证(1)的逆命题成立.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
医院药学信息服务的内容:
A、扑尔敏B、阿司匹林C、普鲁本辛D、硫酸舒喘灵E、干酵母高空作业者工作时禁用
医疗机构中药饮片的管理中,关于调剂与临方炮制的说法,错误的是
【背景资料】某施工单位(乙方)与某建设单位(甲方)签订了某项工业建筑的地基处理与基础工程施工合同。由于工程量无法准确确定,根据施工合同专用条款的规定,按施工图预算方式计价,乙方必须严格按照施工图及施工合同规定的内容及技术要求施工。乙方的分项工程首
下列关于税务机关与纳税人的权利义务的表述中,正确的有()。
甲股份有限公司(以下简称“甲公司”)拟自建一条生产线,与该生产线建造相关的情况如下:(1)20×2年1月2日,甲公司发行公司债券,专门筹集生产线建设资金。该公司债券为3年期分期付息、到期还本债券,面值为3000万元,票面年利率为5%,发行价格为3069.
志存高远、勤恳敬业、甘为人梯、乐于奉献,这些体现了新时期教师职业道德规范内容中的()。
Moreandmoreresidences,businesses,andevengovernmentagenciesareusingtelephoneansweringmachinestotakemessagesorgi
下列关于线性链表叙述中,正确的是
【B1】【B10】
最新回复
(
0
)