首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: 对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: 对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2012-04-22
113
问题
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:
对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
要证f’(ξ)-λ[f(ξ)-ξ]=1,即要证[f’(ξ)-1]-λ[f(ξ)-ξ]=0,记φ(x)=f(x)-x,也就是要证φ’(f)-λφ(ξ)=0. 构造辅助函数F(x)=e
-λx
φ(x)=e
-λx
[f(x)-x],不难发现F(x)在[0,η]上满足尔尔定理的全部条件,故存在ξ∈(0,η),使F’(ξ)=0,即e
-λx
[φ’(ξ)-λφ(ξ)]=0,而e
-λx
≠0,从而有φ’(ξ)-λφ(ξ)=0,即f’(ξ)-λ[f(ξ)-ξ]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/h8F4777K
0
考研数学三
相关试题推荐
新华社北京5月23日电,日前,国务院总理李克强主持召开国务院常务会议,进一步部署稳经济一揽子措施,努力推动经济回归正常轨道、确保运行在合理区间。会议指出,当前经济下行压力持续加大。许多市场主体十分困难。()是解决我国一切问题的基础和关键
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
利用函数的凹凸性,证明下列不等式:
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
随机试题
A.抗Jo-1抗体B.抗乙酰胆碱受体抗体C.核周型抗中性粒细胞胞浆抗体D.抗Scl-70抗体E.抗Sin抗体重症肌无力可有
有关抗生素管理下列哪项错误
A.刺激颈动脉体感受器B.刺激主动脉体感受器C.直接刺激脑桥呼吸调整中枢D.直接刺激延髓呼吸中枢动脉血H+浓度增加时引起呼吸加强的主要机制是
老年期妇女生理上最突出表现是
具有抗吞噬作用的细菌结构是
印戒样癌细胞多见于
A.左锁骨上窝淋巴结B.右锁骨上窝淋巴结C.颈部淋巴结D.腋下淋巴结E.以上都不是鼻咽癌较易转移到()
分析方法既要充分反映评估对象各方面的最重要功能,又要防止过分强调某个因素而导致系统失去平衡指的是评估原则中的()原则。
自我防御性归因是指通过强调自已对积极的、合乎期望的好结果的作川,缩小对消极的、不合乎期望的坏结果的责任来保护自尊。根据上述定义,下列属于自我防御性归因的是()。
A.心电图检查B.24小时动态心电图C.导管调搏检查D.心内电生理检查诊断心律失常最重要的无创检查方法是
最新回复
(
0
)