首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
admin
2015-08-17
25
问题
已知A是n阶矩阵,α
1
,α
2
……α
s
是n维线性无关向量组,若Aα
1
,Aα
2
……Aα
s
线性相关.证明:A不可逆.
选项
答案
因A
1
α
1
+A
2
α
2
+…A
s
α
s
线性相关,故存在不全为零的数k
1
,k
2
,……,k
s
,使得k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0,即A(k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
)=Aξ=0.其中ξ=k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
成立,因已知α
1
,α
2
……α
s
线性无关,对任意不全为零的k
1
,k
2
,……,k
s
,有ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,而Aξ=0.说明线性方程组AX=0有非零解,从而|A|=0,A是不可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/fhw4777K
0
考研数学一
相关试题推荐
设f’(x)=arcsin(x一1)2,f(0)=0,求∫01f(x)dx。
求u=χ2+y2+z2在=1上的最小值.
求曲线y=cosx(-π/2≤x≤π/2)与x轴围成的区域绕x轴、y轴形成的几何体体积.
[*]
已知随机变量X的概率密度为f(x)=,求(1)常数a,b的值;(2)。
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:交通车
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
用正交变换法化二次型f(χ1,χ2,χ3)=χ12+χ22+χ32-4χ1χ2-4χ1χ3-4χ2χ3为标准二次型.
设B是可逆阵,A和B同阶,且满足A2+AB+B2=O,证明:A和A+B都是可逆阵,并求A一1和(A+B)一1.
设则
随机试题
女性,72岁。1小时前不慎摔伤右髋部,查体:右下肢短缩,外旋50。畸形,右髋肿胀不明显,但有叩痛。以下哪项诊断可能性最大
工程量清单中的()是非工程实体项目。
用列表法编制的弹性预算,主要特点有()。
“一票否决制”体现的决策规则是()。
1930年,毛泽东撰写《反对本本主义》一文,主要批判了
设A是m×n矩阵,r(A)=m<n,则下列命题中不正确的是
请在【答题】菜单中单击【考生文件夹】按钮,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。小李今年毕业后,在一家计算机图书销售公司担任市场部助理,主要的工作职责是为部门经理提供销售信息的分析和汇总。请你根
WouldyoubelievethatthefirstoutstandingdeafteacherinAmericawasLaurentClerc,aFrenchman?At12,he【C1】______theRoya
Thehumannoseisanunderratedtool.Humansareoftenthoughttobeinsensitivesmellerscomparedwithanimals,butthisislar
Gettingagoodnight’ssleephaslongbeenknowntoconsolidatetheday’smemories,movingthemfromshort-termstorageintolon
最新回复
(
0
)