首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设α1=(1,2,1,2)T,α2=(1,0,3,1)T,α3=(2,一1,0,1)T,β=(2,1,一2,2)T,判断β是否能由α1,α2,α3线性表出?如能,判断表出的方法是否唯一.
设α1=(1,2,1,2)T,α2=(1,0,3,1)T,α3=(2,一1,0,1)T,β=(2,1,一2,2)T,判断β是否能由α1,α2,α3线性表出?如能,判断表出的方法是否唯一.
admin
2016-07-11
59
问题
设α
1
=(1,2,1,2)
T
,α
2
=(1,0,3,1)
T
,α
3
=(2,一1,0,1)
T
,β=(2,1,一2,2)
T
,判断β是否能由α
1
,α
2
,α
3
线性表出?如能,判断表出的方法是否唯一.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
α
3
=β,则增广矩阵为 [*] 对增广矩阵进行初等行变换有 [*] 所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有唯一解,x
1
=-1, x
2
=一1,x
3
=1,即β能由α
1
,α
2
,α
3
线性表示,且表示的方法唯一,即β=α
1
—α
2
+α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/flyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
Storytellingisoneofthefewhumanfeaturesthataretrulyuniversalacrosscultureandthroughallofknownhistory.Anthropo
Storytellingisoneofthefewhumanfeaturesthataretrulyuniversalacrosscultureandthroughallofknownhistory.Anthropo
MyhusbandChristopherwasonceafinancialplanner.Eventhoughhecouldn’tbalanceourbudget,hisclientstrustedhimcomplete
MyhusbandChristopherwasonceafinancialplanner.Eventhoughhecouldn’tbalanceourbudget,hisclientstrustedhimcomplete
Shoppingforclothesisnotthesameexperienceforamanasitisforawoman.Amangoesshopping(11)______heneedssometh
《湘夫人》的主要艺术特征是
设3阶矩阵则(AT)1=__________.
设方阵A满足条件A’A=E,求证:A的实特征向量所对应的特征值的绝对值等于1.
设A是n阶方阵,E是n阶单位矩阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
a、b的值使线性方程组有无穷多解,并求出通解.
随机试题
直接影响活动效率,顺利完成某种活动必备的个性心理特征是【】
纽曼的保健系统模式认为护士协助患者进行康复锻炼是属于
A.一捻金B.肥儿丸C.健脾消食丸D.小儿消食片E.小儿化食丸具有健脾和胃、消食、化滞功效的中成药是()
商业名称权的特点不包括()。
试问,验算柱对承台的冲切时,承台的抗冲切承载力设计值(kN),与下列何项数值最为接近?
下列各项中,符合营业税有关规定的有( )。
黄山松在黄山岩石丛这种难以见容、与己为敌的环境里生长,海拔高达一千六七百米,名松的树龄都以数百年计。这些松树因抗风御霜,针叶短粗,冠平如削,绿色深沉,枝干坚韧且富弹性,一株株显得生气勃勃,十分顽强。迎客松挺立在青狮石旁,玉屏峰与天都峰的风口上,寿逾千年,两
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一求f’(x);
支持子程序调用的数据结构是()。
InterculturalLearningI.Introduction—gapbetweenlanguageteachinginclassandintherealworld—【T1】ofinterculturalawa
最新回复
(
0
)