首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是( )
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是( )
admin
2019-12-24
96
问题
设A为4阶矩阵,A=(α
1
,α
2
,α
3
,α
4
),若Ax=0的基础解系为(1,2,-3,0)
T
,则下列说法中错误的是( )
选项
A、α
1
,α
2
,α
3
线性相关。
B、α
4
可由α
1
,α
2
,α
3
线性表出。
C、α
1
,α
2
,α
4
线性无关。
D、α
1
可由α
2
,α
3
,α
4
线性表出。
答案
B
解析
Ax=0的基础解系为(1,2,-3,0)
T
,可知r(A)=3且α
1
+2α
2
-3α
3
=0,则α
1
,α
2
,α
3
线性相关,所以A项正确。
因为r(A)=3且α
1
,α
2
,α
3
线性相关,若α
4
可由α
1
,α
2
,α
3
线性表出,则r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)<3,所以B项错误。
由于α
3
=1/3α
1
+2/3α
2
,可知α
3
能由α
1
,α
2
,α
4
线性表出,故r(α
1
,α
2
,α
4
)=r(α
1
,α
2
,α
3
,α
4
)=3,因此α
1
,α
2
,α
4
线性无关,所以C项正确。
由于α
1
=-2α
2
+3α
3
,可知α
1
可由α
2
,α
3
,α
4
线性表出,所以D项正确。
本题考查齐次线性方程组基础解系与系数矩阵列向量的关系以及通过比较向量组的秩确定向量之间的关系。
转载请注明原文地址:https://kaotiyun.com/show/fmD4777K
0
考研数学三
相关试题推荐
设,要使得A正定,a应该满足的条件是()。
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
一条自动生产线连续生产n件产品不出故障的概率为n=0,1,2,….假设产品的优质品率为p(0<p<1).如果各件产品是否为优质品相互独立.(I)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率;(Ⅱ)若已知在某两次故障间该生产线生产了
若在区间(0,1)上随机地取两个数u,v,则关于x的一元二次方程x2—2vx+u=0有实根的概率是________.
某人衣袋中有两枚硬币,一枚是均匀的,另一枚两面都是正面.(I)如果他随机取一枚抛出,结果出现正面,则该枚硬币是均匀的概率为______;(Ⅱ)如果他将这枚硬币又抛一次,又出现正面,则该枚硬币是均匀的概率为______.
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pqm-1,m=1,2,…,0<p<1,q=1—p,Y服从标准正态分布N(0,1).求:(I)U=X+Y的分布函数;(Ⅱ)V=XY的分布函数.
设B=(A+kE)2.(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
已知ξ1=(1,1,一1,一1)T和ξ2=(1,0,一1,0)T是线性方程组的解,η=(2,一2,1,1)T是它的导出组的解,求方程组的通解.
曲线处的切线方程为________。
设位于曲线下方,x轴上方的无界区域为G,则G绕x轴旋转一周所得空间区域的体积为__________.
随机试题
新中国成立以来,国家最高权力机关颁布了6部教育方面的法律,它们分别是:1980年颁布的《中华人民共和国学位条例》,1986年颁布的《中华人民共和国义务教育法》,_______颁布的《中华人民共和国教师法》,_______颁布的《中华人民共和国教育法》,
发挥领导作用的基础是
与淡白舌最无关的主证是
A.柴胡疏肝散B.逍遥散C.天麻钩藤饮D.镇肝熄风汤患者腹痛胀闷,遇忧思恼怒则剧,得嗳气或矢气则舒,舌红苔薄白,脉弦。治宜选用
老年人易发生体位性低血压的主要原因是
具有泻下,清肝,杀虫功效的药物是
沸腾干燥与喷雾干燥的共同点为
通常我国将测定针入度的标准条件设定为:温度()、针总质量()、贯入时间()。
根据《土地登记代理人职业资格制度暂行规定》,土地登记代理人可以从事的登记代理业务包括()。
______wasrecognizedasthegreatestpoetofVictorianEngland.
最新回复
(
0
)