首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是( )
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是( )
admin
2019-12-24
106
问题
设A为4阶矩阵,A=(α
1
,α
2
,α
3
,α
4
),若Ax=0的基础解系为(1,2,-3,0)
T
,则下列说法中错误的是( )
选项
A、α
1
,α
2
,α
3
线性相关。
B、α
4
可由α
1
,α
2
,α
3
线性表出。
C、α
1
,α
2
,α
4
线性无关。
D、α
1
可由α
2
,α
3
,α
4
线性表出。
答案
B
解析
Ax=0的基础解系为(1,2,-3,0)
T
,可知r(A)=3且α
1
+2α
2
-3α
3
=0,则α
1
,α
2
,α
3
线性相关,所以A项正确。
因为r(A)=3且α
1
,α
2
,α
3
线性相关,若α
4
可由α
1
,α
2
,α
3
线性表出,则r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)<3,所以B项错误。
由于α
3
=1/3α
1
+2/3α
2
,可知α
3
能由α
1
,α
2
,α
4
线性表出,故r(α
1
,α
2
,α
4
)=r(α
1
,α
2
,α
3
,α
4
)=3,因此α
1
,α
2
,α
4
线性无关,所以C项正确。
由于α
1
=-2α
2
+3α
3
,可知α
1
可由α
2
,α
3
,α
4
线性表出,所以D项正确。
本题考查齐次线性方程组基础解系与系数矩阵列向量的关系以及通过比较向量组的秩确定向量之间的关系。
转载请注明原文地址:https://kaotiyun.com/show/fmD4777K
0
考研数学三
相关试题推荐
在区间(0,1)中任取两数,求这两数乘积大于0.25的概率.
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
证明对于任何m×n实矩阵A,ATA的负惯性指数为0.如果A秩为n,则ATA是正定矩阵.
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为(1)求A.(2)求一个满足要求的正交矩阵Q.
设随机变量X的分布函数为求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}以及概率密度f(x).
设随机变量X的概率密度为则随机变量X的二阶原点矩为_______.
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,f’y(x,0)=x,则f(x,y)=______.
z=f(xy)+yg(x2+y2),其中f,g二阶连续可导,则=______.
曲线y=的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
随机试题
气瓶的瓶体有肉眼可见的凸起缺陷的应如何处理()。
王某是上海某机械制造公司的职员,无期货从业经历,现拟申请某期货公司的独立董事,下列可作为王某的推荐人的有()。
发行人、保荐机构应履行其对发行申请文件的质量控制的义务,按有关规定对申请文件进行核查并出具内核意见。()
成熟阶级行业的销售、利润和现金流的特点包括()
理性概括是一种高级的概括形式,是知觉水平的概括。()
对义务兵实施警告处分由营批准。()
下列是四位儿童的斯坦福一比纳智力测验结果。心理年龄超过8岁的儿童是()
Nowcustomhasnotbeencommonlyregardedasasubjectofanygreatimportance.Theinnerworkingsofourownbrainswefeelto
Stratford-on-Avon,asweallknow,hasonlyoneindustry-WilliamShakespeare-buttherearetwodistinctlyseparateandincreasin
Whatdoesthemando?
最新回复
(
0
)