首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=2α2+3α3. (I)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
设A为3阶矩阵,α1,α2,α3为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=2α2+3α3. (I)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2016-04-11
25
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=2α
2
+3α
3
.
(I)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(I)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用胁Aα
1
=一α
1
,Aα
2
=α
2
, 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①一②,得 2k
1
α
1
一k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[一α
1
,α
2
,α
2
+α
3
]=[α
1
,α
2
,α
3
][*] 由(I)知矩阵P可逆,用P
-1
左乘上式两端,得 P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gAw4777K
0
考研数学一
相关试题推荐
=________.
设函数其中g(x)二阶连续可导,且g(0)=1.求f’(x).
设f’(x)=4x3+3bx2+2cx+d,已知曲线y=f(sinπx/2)-sinf(x)在(0,y|x=0),(1,y|x=1)处与x轴相切。证明:
设A,B是n阶可逆矩阵,且A-1~B-1,则下列结果①AB~BA②A~B③A2~B2④AT~BT正确的个数为()
设x=z(x,y)由方程x-z=f(y-z)确定,则dz/dx+dz/dy=()
设(a>0),A是3阶非零矩阵,且ABT=0,则方程组Ax=0的通解为()
微分方程(3y—2x)dy=ydx的通解是________.
设f(x)=21nx,f[φ(x)]=1n(1-lnx),求φ(x)及其定义域.
试求函数f(x,y)=4x2-6x+3y+1在平面区域D={(x,y)|x2+y2≤a2,a>0)上的平均值.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
随机试题
线性表的________元素没有直接后继。
阅读柳永的《八声甘州》,然后回答下列小题。对潇潇暮雨洒江天,一番洗清秋。渐霜风凄紧,关河冷落,残照当楼。是处红衰翠减,苒苒物华休。唯有长江水,无语东流。不忍登高临远,望故乡渺邈,归思难收。叹年来踪迹,何事苦淹留?想佳人,妆楼颙望,误几回
下述哪项不是结构式访谈的缺点
关于包合物的错误表述是
某企业2007年5月从银行取得6个月的贷款300000元,年利率4%,到期一次还本付息,则该笔款项属于企业的( )。
()是旅游者直接感受到的情感,是评价服务质量优劣的直接因素。
阅读下面的文言文,完成问题徐孺子祠堂记曾巩汉元兴以后,政出宦者
皮亚杰认为,儿童认知发展的具体运算阶段的主要特征表现为()。
假设国库券的利率为5%,证券市场组合的平均收益率为15%,市场上A、B、C三种股票的系数分别为0.91、1.17、1.8;三种股票的必要收益率分别为14.1%、16.7%、23%。若每个企业的计划完成指标都达到乙企业的水平,则实际销售额可增加(
[*]
最新回复
(
0
)