首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=2α2+3α3. (I)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
设A为3阶矩阵,α1,α2,α3为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=2α2+3α3. (I)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2016-04-11
32
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=2α
2
+3α
3
.
(I)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(I)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用胁Aα
1
=一α
1
,Aα
2
=α
2
, 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①一②,得 2k
1
α
1
一k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[一α
1
,α
2
,α
2
+α
3
]=[α
1
,α
2
,α
3
][*] 由(I)知矩阵P可逆,用P
-1
左乘上式两端,得 P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gAw4777K
0
考研数学一
相关试题推荐
设f(x)连续可导,.
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<θ<1),证明:.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
设y=y(x)由x=∫π/2tet-usinu/3du,y=∫π/2tet-ucos2udu确定,则曲线y=y(x)在t=π/2对应点处的切线方程为________。
设A,B是n阶可逆矩阵,且A-1~B-1,则下列结果①AB~BA②A~B③A2~B2④AT~BT正确的个数为()
设x=z(x,y)由方程x-z=f(y-z)确定,则dz/dx+dz/dy=()
已知f(x)的定义域为(0,+∞),且满足xf(x)=1+∫0xu2f(u)du。求f(x)在定义域内的最小值
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E~2ααT)=B,则()
设有摆线(0≤t≤2π),求:(Ⅰ)曲线绕直线y=2旋转所得到的旋转体体积;(Ⅱ)曲线形心的纵坐标。
试求函数f(x,y)=4x2-6x+3y+1在平面区域D={(x,y)|x2+y2≤a2,a>0)上的平均值.
随机试题
关于盆腔炎的传染途径,下列哪项是正确的
祛风寒湿痹,长于治腰膝、脚足关节痹痛的药物是祛风通络,善治风湿顽痹、肢体麻木的药物是
按担保法的规定只能由第三人出面担保的形式是( )。
如果一国挂牌的本币与各种外币的即期汇率与国际市场这类外币的即期汇率比价不一致,其差额超过1%,存在时间超过一周者,也属于复汇率。
下列关于资源税纳税期限的表述,正确的有()。
以下少数民族中,除()外都有自己的语言。
催办的形式有()。
Scienceisadominantthemeinourculture.Sinceittouchesalmosteveryfacetofourlife,educatedpeopleneedatleastsome
八一宣言
某登山旅游小组成员互相帮助,建立了深厚的友谊。后加入的李佳已经获得其他成员多次救助,但是他尚未救助过任何人,救助过李佳的人均曾被王玥救助过,赵欣救助过小组的所有成员,王玥救助过的人也曾被陈蕃救助过。根据以上陈述,可以得出以下哪项结论?
最新回复
(
0
)