首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=2α2+3α3. (I)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
设A为3阶矩阵,α1,α2,α3为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=2α2+3α3. (I)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2016-04-11
27
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为A的分别属于特征值一1,1的特征向量,向量α
3
满足Aα
3
=2α
2
+3α
3
.
(I)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(I)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用胁Aα
1
=一α
1
,Aα
2
=α
2
, 一k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①一②,得 2k
1
α
1
一k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[一α
1
,α
2
,α
2
+α
3
]=[α
1
,α
2
,α
3
][*] 由(I)知矩阵P可逆,用P
-1
左乘上式两端,得 P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gAw4777K
0
考研数学一
相关试题推荐
设连续非负函数f(x)满足f(x)f(-x)=1,则=________.
=________.
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=________.
求函数y=ln(x+)的反函数。
设,3阶矩阵B的秩为2,且r(AB)=1,则齐次方程组A*x=0的线性无关解的个数为()
设是正交矩阵,b>0,c>0求正交变换x=Qy化二次型f(x1,x2,x3)=xTAx为规范形
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件x2/a2+y2+b2=1(a>0,b<0)下取得最小值,求a,b的值。
设y=y(x)由x=3t/(1+t3),y=3t3/(1+t3)确定,则曲线y=y(x)的斜渐近线方程为()
设f(x)=21nx,f[φ(x)]=1n(1-lnx),求φ(x)及其定义域.
随机试题
下列各项中,最能确定慢性胃炎诊断的是
若有定义:inta,b;通过语句scanf("%d;%d",&a,&b);能把整数3赋给变量a,5赋给变量b的输入数据是
食物链可分为捕食食物链、腐屑食物链、______和混合食物链。
用物理方法杀灭细菌称
贫血性梗死常发生于
固定桥若有中间基牙,此基牙的固位体不应选择
股利的支付会减少管理层可支配的自由现金流量,在一定程度上可以抑制管理层的过度投资或在职消费行为。这种观点体现的股利理论是()。
【资料】小刚是某中学初二学生,一天中午放学后,小刚在操场上和同学打篮球,同班女生小静看见他脸上有许多汗珠,就上前用餐巾纸为他擦汗,这一举动恰好被从一旁经过的班主任田老师看见。田老师当即把他俩叫到办公室,他先给小静看了两页日记(这是田老师私自从小刚放在课桌内
2008年,中国大地上堪称祸福更替,悲喜交集。所谓“福”和“喜”,大抵是百年一遇,普照人心,如迎接北京奥运会和残奥会,纪念改革开放30周年,而所谓“祸”与“悲”,则属于____________,____________。填入划横线部分最恰当的一项是(
Withitscommoninterestinlawbreakingbutitsimmenserangeofsubjectmatterandwidely-varyingmethodsoftreatment,thecri
最新回复
(
0
)