设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f’(x)|≤2.证明:

admin2016-09-12  36

问题 设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f’(x)|≤2.证明:

选项

答案由微分中值定理得f(x)-f(0)=f’(ξ1)x,其中0<ξ1<x,f(x)-f(2)=f’(ξ2)(x-2),其中x<ξ<2,于是[*] 从而[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/gGt4777K
0

最新回复(0)