首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一解,并求x1; (Ⅲ)当a为何值时,该方程组有无穷多解,并求通解。
设n元线性方程组Ax=b,其中 (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一解,并求x1; (Ⅲ)当a为何值时,该方程组有无穷多解,并求通解。
admin
2019-03-07
51
问题
设n元线性方程组Ax=b,其中
(Ⅰ)证明行列式|A|=(n+1)a
n
;
(Ⅱ)当a为何值时,该方程组有唯一解,并求x
1
;
(Ⅲ)当a为何值时,该方程组有无穷多解,并求通解。
选项
答案
(Ⅰ)记D
n
=|A|,将其按第一列展开得D
n
=2aD
n-1
-a
2
D
n-2
,所以 D
n
-aD
n-1
=aD
n-1
-a
2
D
-2
=a(D
n-1
-aD
n-2
) =a
2
(D
n-2
-aD
n-3
)=…=a
n-2
(D
2
一aD
1
)=a
n
。 即 D
n
=a
n
+aD
n-1
=a
n
+a(a
n-1
+aD
n-2
)=2a
n
+a
2
D
n-2
=…=(n-2)a
n
+a
n-2
D
2
=(n-1)a
n
+a
n-1
D
1
=(n-1)a
n
+a
n-1
.2a=(n+1)a
n
。 (Ⅱ)由克拉默法则,当a≠0时,方程组系数行列式D
n
≠0,故方程组有唯一解。将D
n
的第一列换成b,得行列式为 [*] (Ⅲ)方程组有无穷多解,则|A|=0,即当a=0时,方程组为 [*] 此时方程组系数矩阵的秩和增广矩阵的秩均为n一1,所以方程组有无穷多组解,其通解为 x=(0,1,…,0)
T
+k(1,0,…,0)
T
, 其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/gH04777K
0
考研数学一
相关试题推荐
曲线x2+y2+z2=a与x2+y2=2az(a>0)的交线是()
与α1=(1,2,3,-1)T,α2=(0,1,1,2)T,α3=(2,1,3,0)T都正交的单位向量是______。
(2006年)设函数y=f(x)具有二阶导数,且f′(x)>0,f"(x)>0,△x为自变量x在X0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
(2009年)设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记求S1与S2的值。
(2000年)曲面x2+2y2+3z2=21在点(1,一2,2)的法线方程为________。
已知微分方程y’+y=f(x),且f(x)是R上的连续函数.(I)当f(x)=x时,求微分方程的通解.(Ⅱ)当f(x)为周期为T的函数,证明:微分方程存在唯一以T为周期的解.
设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度fZ(z)。
设随机变量X~t(n),Y~F(1,n),给定a(0<a<0.5),常数c满足P{X>c}=a,则P{Y>c2}=()
令f(x)=x-[x],求极限
随机试题
月经量极少,甚至无月经的是
结核性腹膜炎的感染途径主要是
患者,男,25岁。左下后牙区痛,查左下7牙龈红肿,牙周溢脓,黏膜饱满,左下7无叩击痛和刺激痛。最适合该病的治疗措施是
善治肠痈的药是
为了有效使用土地,()对土地的归属、使用、监督检查等作了明确的规定,是我国进行土地管理的基本依据。
下列关于双代号绘图法的表述,正确的是()。
在微波炉行业,格兰仕占了一半以上的市场份额,财源滚滚而人。根据波士顿矩阵,微波炉是格兰仕的()。
contaminate
[*]
下面关于USB的叙述中,错误的是()。
最新回复
(
0
)